Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 32 (1999) no. 6, pp. 769-812.
@article{ASENS_1999_4_32_6_769_0,
     author = {Vishik, Misha},
     title = {Incompressible flows of an ideal fluid with vorticity in borderline spaces of {Besov} type},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {769--812},
     publisher = {Elsevier},
     volume = {Ser. 4, 32},
     number = {6},
     year = {1999},
     doi = {10.1016/s0012-9593(00)87718-6},
     mrnumber = {2000i:76008},
     zbl = {0938.35128},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)87718-6/}
}
TY  - JOUR
AU  - Vishik, Misha
TI  - Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1999
SP  - 769
EP  - 812
VL  - 32
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(00)87718-6/
DO  - 10.1016/s0012-9593(00)87718-6
LA  - en
ID  - ASENS_1999_4_32_6_769_0
ER  - 
%0 Journal Article
%A Vishik, Misha
%T Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type
%J Annales scientifiques de l'École Normale Supérieure
%D 1999
%P 769-812
%V 32
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(00)87718-6/
%R 10.1016/s0012-9593(00)87718-6
%G en
%F ASENS_1999_4_32_6_769_0
Vishik, Misha. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 32 (1999) no. 6, pp. 769-812. doi : 10.1016/s0012-9593(00)87718-6. https://www.numdam.org/articles/10.1016/s0012-9593(00)87718-6/

[BC] H. Bahouri and J.-Y. Chemin, Equations de transport relatives à des champs de vecteurs on-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., Vol. 127, 1994, pp. 159-181. | MR | Zbl

[BKM] T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth for the 3-D Euler equations, Comm. Math. Phys., Vol. 94, 1984, pp. 61-66. | MR | Zbl

[B] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l'Ecole Norm. Sup., Vol. 14, 1981, pp. 209-246. | EuDML | Numdam | MR | Zbl

[BB] J. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Funct. Anal., Vol. 15, 1974, no. 4, pp. 341-363. | MR | Zbl

[C] D. Chae, Weak solutions of 2D Euler equations with initial vorticity in L log L(R2), J. Diff. Equat., Vol. 103, 1993, pp. 323-337. | MR | Zbl

[C1] J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque no. 230, 1995. | Numdam | MR | Zbl

[C2] J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnelles, Ann. Ecole Norm. Sup., Vol. 26, 1993, pp. 1-26. | EuDML | Numdam | MR | Zbl

[CL] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Diff. Equat., Vol. 121, 1995, pp. 314-328. | MR | Zbl

[D] I. Daubechies, Ten lectures on wavelets, SIAM, 1992. | MR | Zbl

[De] J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Vol. 4, 1991, pp. 553-586. | MR | Zbl

[D1] B. Desjardins, A few remarks on ordinary differential equations, Commun. in PDE's, Vol. 21, 1966, pp. 1667-1703. | MR | Zbl

[D2] B. Desjardins, Linear transport equations with initial values in Sobolev spaces and application to Navier-Stokes equations, Diff. And Int. Equat., Vol. 10, 1997, no. 3, pp. 577-586. | MR | Zbl

[DL] R. Di Perna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Vol. 98, 1989, no. 3, pp. 511-549. | MR | Zbl

[DM] R. Di Perna and A. Majda, Concentrations in regularizations for 2-D incompressible flows, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 301-345. | MR | Zbl

[EM] D. Ebin and J. Marsden, Groups of diffeomorphismes and the motion of an incompressible fluid, Ann. of Math., Vol. 92, 1970, pp. 102-163. | MR | Zbl

[EVM] L.C. Evans and S. Múller, Hardy spaces and the two-dimensional Euler equations with non-negative vorticity, J. Amer. Math. Soc., Vol. 7, 1994, pp. 199-220. | MR | Zbl

[FJ] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Math. J., Vol. 34, 1985, pp. 777-799. | MR | Zbl

[Ge] P. Gérard, Résultats récents sur les fluides parfaits incompressibles bidimensionnels [d'après J.-Y. Chemin et J.-M. Delort], Seminar Bourbaki, 1991/1992, no. 757, Astérisque, Vol. 206, 1992, pp. 411-444. | Numdam | Zbl

[G] N. Gunther, On the motion of fluid in a moving container, Izvestia Akad. Nauk USSR, Ser. Fiz.-Math., Vol. 20, 1927, pp. 1323-1348, 1503-1532 ; Vol. 21, 1927, pp. 521-526, 735-756 ; Vol. 22, 1928, pp. 9-30.

[KP] T. Kato and G. Ponce, Well posedness of the Euler and Navier-Stokes equations in Lebesgue spaces Lsp(R2), Revista Ibero-Americana, Vol. 2, 1986, pp. 73-88. | MR | Zbl

[LM] P. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Revista Ibero-Americana, Vol. 2, 1986, pp. 1-18. | MR | Zbl

[L] L. Lichtenstein, Über einige Existenzprobleme der Hydrodynamik homogenerun-zusammendrück barer, reibungsloser Flüβigkeiten und die Helmgoltzschen Wirbelsatze0, Math. Z., Vol. 23, 1925, pp. 89-154 ; Vol. 26, 1927, pp. 196-323 ; Vol. 28, 1928, pp. 387-415 ; Vol. 32, 1930, pp. 608-725. | JFM

[M] A. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., Vol. 42, 1993, pp. 921-939. | MR | Zbl

[M1] Y. Meyer, Remarques sur un théorème de J.-M. Bony, Suppl. Rend. Circ. Mat. Palermo, Vol. 1, 1981, pp. 1-20. | MR | Zbl

[M2] Y. Meyer, Wavelets and operators, Cambridge University Press, 1992. | MR | Zbl

[P] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Press, 1976. | MR | Zbl

[S] V. Scheffer, An inviscid flow with compact support in space-time, J. of Geom. Anal., Vol. 3, 1993, no. 4, pp. 343-401. | MR | Zbl

[Sh] A. Shnirelman, On the non-uniqueness of weak solution of the Euler equations, Comm. Pure Appl. Math., Vol. 50, 1997, no. 12, pp. 1261-1286. | MR | Zbl

[T] R. Temam, Local existence of C∞ solutions of the Euler equations of incompressible perfect fluid, Lecture Notes in Math., Vol. 565, 1976, pp. 184-194. | MR | Zbl

[Tr] H. Triebel, Theory of Function Spaces 2, Birkhauser, 1992. | MR

[Y1] V. Yudovich, Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Mat., Vol. 3, 1963, pp. 1032-1066. | Zbl

[Y2] V. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Mathematical Research Letters, Vol. 2, 1995, pp. 27-38. | MR | Zbl

[Y3] V. Yudovich, Some bounds of solutions of elliptic equations, Mat. Sbornik, Vol. 59, 1962, pp. 229-244. | MR | Zbl

[V] M. Vishik, Hydrodynamics in Besov spaces, Arch. for Rat. Mech. and Anal., Vol. 145, 1998, pp. 197-214. | MR | Zbl

[W] W. Wolibner, Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Vol. 37, 1933, pp. 698-627. | JFM | Zbl

  • Wu, Fan Remarks on Navier–Stokes regularity criteria in Vishik-type spaces, Applied Mathematics Letters, Volume 165 (2025), p. 109506 | DOI:10.1016/j.aml.2025.109506
  • Guo, Dengjun; Zhao, Lifeng Global well-posedness of weak solutions to the incompressible Euler equations with helical symmetry in R3, Journal of Differential Equations, Volume 416 (2025), p. 806 | DOI:10.1016/j.jde.2024.10.008
  • Jeong, In-Jee; Kim, Junha Strong ill-posedness for SQG in critical Sobolev spaces, Analysis PDE, Volume 17 (2024) no. 1, p. 133 | DOI:10.2140/apde.2024.17.133
  • Angulo-Castillo, V.; Ferreira, L.C.F.; Kosloff, L. Long-time solvability for the 2D inviscid Boussinesq equations with borderline regularity and dispersive effects, Asymptotic Analysis, Volume 137 (2024) no. 1-2, p. 53 | DOI:10.3233/asy-231879
  • Crippa, Gianluca; Stefani, Giorgio An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 7 | DOI:10.1007/s00526-024-02750-4
  • De Nitti, Nicola; Meyer, David; Seis, Christian Optimal regularity for the 2D Euler equations in the Yudovich class, Journal de Mathématiques Pures et Appliquées, Volume 191 (2024), p. 103631 | DOI:10.1016/j.matpur.2024.103631
  • Berselli, Luigi C.; Spirito, Stefano Fourier–Galerkin approximation of the solutions of the 2D Euler equations with bounded vorticity, Journal of Hyperbolic Differential Equations, Volume 21 (2024) no. 03, p. 503 | DOI:10.1142/s0219891624400010
  • Wu, Fan Remarks on generalized NSE regularity criteria, Ricerche di Matematica (2024) | DOI:10.1007/s11587-024-00894-1
  • Kim, Chanwoo; La, Joonhyun Vorticity Convergence from Boltzmann to 2D Incompressible Euler Equations Below Yudovich Class, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 3, p. 3144 | DOI:10.1137/23m1549857
  • Domínguez, Oscar; Tikhonov, Sergey Truncated smooth function spaces, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9259
  • Elgindi, Tarek; Jeong, In-Jee On Singular Vortex Patches, I: Well-posedness Issues, Memoirs of the American Mathematical Society, Volume 283 (2023) no. 1400 | DOI:10.1090/memo/1400
  • Lanthaler, Samuel On concentration in vortex sheets, Partial Differential Equations and Applications, Volume 4 (2023) no. 2 | DOI:10.1007/s42985-023-00230-6
  • Cozzi, Elaine Uniqueness for active scalar equations in a Zygmund space, Asymptotic Analysis, Volume 130 (2022) no. 3-4, p. 531 | DOI:10.3233/asy-221762
  • Farwig, Reinhard; Kanamaru, Ryo Optimality of Serrin type extension criteria to the Navier-Stokes equations, Advances in Nonlinear Analysis, Volume 10 (2021) no. 1, p. 1071 | DOI:10.1515/anona-2020-0130
  • Chae, Dongho; Wolf, Jörg The Euler equations in a critical case of the generalized Campanato space, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 2, p. 201 | DOI:10.1016/j.anihpc.2020.06.006
  • Lemarié-Rieusset, Pierre Gilles Real Variable Methods in Harmonic Analysis and Navier–Stokes Equations, Harmonic Analysis and Applications, Volume 168 (2021), p. 243 | DOI:10.1007/978-3-030-61887-2_10
  • Bourgain, Jean; Li, Dong Strong Ill-Posedness of the 3D Incompressible Euler Equation in Borderline Spaces, International Mathematics Research Notices, Volume 2021 (2021) no. 16, p. 12155 | DOI:10.1093/imrn/rnz158
  • Guo, Zihua; Li, Kuijie Remarks on the Well-Posedness of the Euler Equations in the Triebel–Lizorkin Spaces, Journal of Fourier Analysis and Applications, Volume 27 (2021) no. 2 | DOI:10.1007/s00041-021-09837-y
  • Kwon, Hyunju Strong ill-posedness of logarithmically regularized 2D Euler equations in the borderline Sobolev space, Journal of Functional Analysis, Volume 280 (2021) no. 7, p. 108822 | DOI:10.1016/j.jfa.2020.108822
  • Chen, Dongxiang; Chen, Xiaoli; Sun, Lijing Well-posedness of the Euler equation in Triebel–Lizorkin–Morrey spaces, Applicable Analysis, Volume 99 (2020) no. 5, p. 772 | DOI:10.1080/00036811.2018.1510491
  • Elgindi, Tarek M.; Masmoudi, Nader L Ill-Posedness for a Class of Equations Arising in Hydrodynamics, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 3, p. 1979 | DOI:10.1007/s00205-019-01457-7
  • Elgindi, Tarek M.; Jeong, In‐Jee Symmetries and Critical Phenomena in Fluids, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 2, p. 257 | DOI:10.1002/cpa.21829
  • Lanthaler, Samuel; Mishra, Siddhartha On the Convergence of the Spectral Viscosity Method for the Two-Dimensional Incompressible Euler Equations with Rough Initial Data, Foundations of Computational Mathematics, Volume 20 (2020) no. 5, p. 1309 | DOI:10.1007/s10208-019-09440-0
  • Kanamaru, Ryo Optimality of logarithmic interpolation inequalities and extension criteria to the Navier–Stokes and Euler equations in Vishik spaces, Journal of Evolution Equations, Volume 20 (2020) no. 4, p. 1381 | DOI:10.1007/s00028-020-00559-0
  • Agélas, Léo A new path to the non blow-up of incompressible flows, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 6, p. 1503 | DOI:10.1016/j.anihpc.2019.04.003
  • Elgindi, Tarek M.; Jeong, In-Jee Finite-Time Singularity Formation for Strong Solutions to the Axi-symmetric 3D Euler Equations, Annals of PDE, Volume 5 (2019) no. 2 | DOI:10.1007/s40818-019-0071-6
  • Nakao, Kohei; Taniuchi, Yasushi Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes Equations in Unbounded Domains, Communications in Mathematical Physics, Volume 359 (2018) no. 3, p. 951 | DOI:10.1007/s00220-017-3061-0
  • Qiu, Hua; Yao, Zheng-an On the well-posedness of the ideal incompressible viscoelastic flow in the critical Besov spaces, Computers Mathematics with Applications, Volume 76 (2018) no. 2, p. 257 | DOI:10.1016/j.camwa.2018.04.017
  • Maekawa, Yasunori; Mazzucato, Anna The Inviscid Limit and Boundary Layers for Navier-Stokes Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 781 | DOI:10.1007/978-3-319-13344-7_15
  • Ferreira, Lucas C. F.; Pérez-López, J. E. On the theory of Besov–Herz spaces and Euler equations, Israel Journal of Mathematics, Volume 220 (2017) no. 1, p. 283 | DOI:10.1007/s11856-017-1519-6
  • Jiu, Quansen; Li, Jun; Niu, Dongjuan Global existence of weak solutions to the three-dimensional Euler equations with helical symmetry, Journal of Differential Equations, Volume 262 (2017) no. 10, p. 5179 | DOI:10.1016/j.jde.2017.01.019
  • Cozzi, Elaine; Gie, Gung-Min; Kelliher, James P. The aggregation equation with Newtonian potential: The vanishing viscosity limit, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 2, p. 841 | DOI:10.1016/j.jmaa.2017.04.009
  • Yue, Gaocheng; Zhong, Chengkui Local well‐posedness and zero‐αlimit for the Euler‐αequations, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 7, p. 2566 | DOI:10.1002/mma.4182
  • Bernicot, Frédéric; Elgindi, Tarek; Keraani, Sahbi On the inviscid limit of the 2D Navier–Stokes equations with vorticity belonging to BMO-type spaces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 2, p. 597 | DOI:10.1016/j.anihpc.2014.12.001
  • Elling, Volker Algebraic spiral solutions of the 2d incompressible Euler equations, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 1, p. 323 | DOI:10.1007/s00574-016-0141-2
  • Elling, Volker Self-Similar 2d Euler Solutions with Mixed-Sign Vorticity, Communications in Mathematical Physics, Volume 348 (2016) no. 1, p. 27 | DOI:10.1007/s00220-016-2755-z
  • Maekawa, Yasunori; Mazzucato, Anna The Inviscid Limit and Boundary Layers for Navier-Stokes Flows, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_15-1
  • Abidi, Hammadi; Sakrani, Saoussen Global well-posedness of helicoidal Euler equations, Journal of Functional Analysis, Volume 271 (2016) no. 8, p. 2177 | DOI:10.1016/j.jfa.2016.06.007
  • Cozzi, Elaine; Kelliher, James P. Incompressible Euler Equations and the Effect of Changes at a Distance, Journal of Mathematical Fluid Mechanics, Volume 18 (2016) no. 4, p. 765 | DOI:10.1007/s00021-016-0268-3
  • Bourgain, Jean; Li, Dong Strong illposedness of the incompressible Euler equation in integer C m spaces, Geometric and Functional Analysis, Volume 25 (2015) no. 1, p. 1 | DOI:10.1007/s00039-015-0311-1
  • Bourgain, Jean; Li, Dong Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Inventiones mathematicae, Volume 201 (2015) no. 1, p. 97 | DOI:10.1007/s00222-014-0548-6
  • Hassainia, Zineb On the 2D isentropic Euler system with unbounded initial vorticity, Journal of Differential Equations, Volume 259 (2015) no. 1, p. 264 | DOI:10.1016/j.jde.2015.02.008
  • Ambrose, David M.; Kelliher, James P.; Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J. Serfati solutions to the 2D Euler equations on exterior domains, Journal of Differential Equations, Volume 259 (2015) no. 9, p. 4509 | DOI:10.1016/j.jde.2015.06.001
  • Cozzi, Elaine Solutions to the 2D Euler equations with velocity unbounded at infinity, Journal of Mathematical Analysis and Applications, Volume 423 (2015) no. 1, p. 144 | DOI:10.1016/j.jmaa.2014.09.053
  • Elgindi, Tarek Mohamed Osgood’s Lemma and Some Results for the Slightly Supercritical 2D Euler Equations for Incompressible Flow, Archive for Rational Mechanics and Analysis, Volume 211 (2014) no. 3, p. 965 | DOI:10.1007/s00205-013-0691-z
  • Cozzi, Elaine The Axisymmetric Euler Equations with Vorticity in Borderline Spaces of Besov Type, Journal of Dynamics and Differential Equations, Volume 26 (2014) no. 4, p. 1095 | DOI:10.1007/s10884-014-9400-3
  • Tang, Hao; Liu, Zhengrong Continuous properties of the solution map for the Euler equations, Journal of Mathematical Physics, Volume 55 (2014) no. 3 | DOI:10.1063/1.4867622
  • Weigant, W. A.; Papin, A. A. On the uniqueness of the solution of the flow problem with a given vortex, Mathematical Notes, Volume 96 (2014) no. 5-6, p. 871 | DOI:10.1134/s0001434614110248
  • Cozzi, Elaine Vanishing viscosity in the plane for nondecaying velocity and vorticity, II, Pacific Journal of Mathematics, Volume 270 (2014) no. 2, p. 335 | DOI:10.2140/pjm.2014.270.335
  • Azzam, Jonas; Bedrossian, Jacob Bounded mean oscillation and the uniqueness of active scalar equations, Transactions of the American Mathematical Society, Volume 367 (2014) no. 5, p. 3095 | DOI:10.1090/s0002-9947-2014-06040-6
  • Вайгант, Владимир Андреевич; Vaigant, Vladimir Andreevich; Папин, Александр Алексеевич; Papin, Alexandr Alexeevich Об единственности решения задачи протекания с заданным вихрем, Математические заметки, Volume 96 (2014) no. 6, p. 820 | DOI:10.4213/mzm10380
  • Park, Young Ja LOGARITHMIC COMPOSITION INEQUALITY IN BESOV SPACES, Journal of the Chungcheong Mathematical Society, Volume 26 (2013) no. 1, p. 105 | DOI:10.14403/jcms.2013.26.1.105
  • Gallay, Thierry Stability and interaction of vortices in two-dimensional viscous flows, Discrete Continuous Dynamical Systems - S, Volume 5 (2012) no. 6, p. 1091 | DOI:10.3934/dcdss.2012.5.1091
  • Gallay, Thierry Interaction of Vortices in Weakly Viscous Planar Flows, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 2, p. 445 | DOI:10.1007/s00205-010-0362-2
  • Bertozzi, Andrea L.; Laurent, Thomas; Rosado, Jesús Lp theory for the multidimensional aggregation equation, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 1, p. 45 | DOI:10.1002/cpa.20334
  • Sueur, Franck Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, Journal of Differential Equations, Volume 251 (2011) no. 12, p. 3421 | DOI:10.1016/j.jde.2011.07.035
  • Zhong, Xin; Wu, Xing-Ping; Tang, Chun-Lei Local well-posedness for the homogeneous Euler equations, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 11, p. 3829 | DOI:10.1016/j.na.2011.03.037
  • Kelliher, James P On the flow map for 2D Euler equations with unbounded vorticity, Nonlinearity, Volume 24 (2011) no. 9, p. 2599 | DOI:10.1088/0951-7715/24/9/013
  • Bardos, Claude; Titi, Edriss S.; Linshiz, Jasmine S. Global regularity and convergence of a Birkhoff‐Rott‐α approximation of the dynamics of vortex sheets of the two‐dimensional Euler equations, Communications on Pure and Applied Mathematics, Volume 63 (2010) no. 6, p. 697 | DOI:10.1002/cpa.20305
  • Linshiz, Jasmine S.; Titi, Edriss S. On the Convergence Rate of the Euler-α, an Inviscid Second-Grade Complex Fluid, Model to the Euler Equations, Journal of Statistical Physics, Volume 138 (2010) no. 1-3, p. 305 | DOI:10.1007/s10955-009-9916-9
  • Takada, Ryo Counterexamples of Commutator Estimates in the Besov and the Triebel–Lizorkin Spaces Related to the Euler Equations, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2473 | DOI:10.1137/100782498
  • Mamontov, Alexander E. On the Uniqueness of Solutions to Boundary Value Problems for Non-stationary Euler Equations, New Directions in Mathematical Fluid Mechanics (2009), p. 281 | DOI:10.1007/978-3-0346-0152-8_15
  • Ettinger, Boris; Titi, Edriss S. Global Existence and Uniqueness of Weak Solutions of Three-Dimensional Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching, SIAM Journal on Mathematical Analysis, Volume 41 (2009) no. 1, p. 269 | DOI:10.1137/08071572x
  • Chae, Dongho Chapter 1 Incompressible Euler Equations: The Blow-up Problem and Related Results, Volume 4 (2008), p. 1 | DOI:10.1016/s1874-5717(08)00001-7
  • Kelliher, James P. Expanding Domain Limit for Incompressible Fluids in the Plane, Communications in Mathematical Physics, Volume 278 (2008) no. 3, p. 753 | DOI:10.1007/s00220-007-0388-y
  • Mucha, Piotr Bogusław; Rusin, Walter M. Zygmund Spaces, Inviscid Limit and Uniqueness of Euler Flows, Communications in Mathematical Physics, Volume 280 (2008) no. 3, p. 831 | DOI:10.1007/s00220-008-0452-2
  • Zhu, Xiangrong A remark on vorticity maximal function, Journal of Mathematical Analysis and Applications, Volume 340 (2008) no. 2, p. 1027 | DOI:10.1016/j.jmaa.2007.09.024
  • Eyink, Gregory L. Dissipative anomalies in singular Euler flows, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 14-17, p. 1956 | DOI:10.1016/j.physd.2008.02.005
  • Chemin, Jean-Yves; Zhang, Ping On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations, Communications in Mathematical Physics, Volume 272 (2007) no. 2, p. 529 | DOI:10.1007/s00220-007-0236-0
  • Chae, Dongho On the finite‐time singularities of the 3D incompressible Euler equations, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 4, p. 597 | DOI:10.1002/cpa.20138
  • Danchin, Raphaël On perfect fluids with bounded vorticity, Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, p. 391 | DOI:10.1016/j.crma.2007.09.002
  • Cozzi, Elaine; Kelliher, James P. Vanishing viscosity in the plane for vorticity in borderline spaces of Besov type, Journal of Differential Equations, Volume 235 (2007) no. 2, p. 647 | DOI:10.1016/j.jde.2006.12.022
  • Даншен, Р; Danchin, Raphael Аксиально-симметричные несжимаемые потоки с ограниченным вихрем, Успехи математических наук, Volume 62 (2007) no. 3, p. 73 | DOI:10.4213/rm6761
  • Lopes Filho, Milton C.; Mazzucato, Anna L.; Nussenzveig Lopes, Helena J. Weak Solutions, Renormalized Solutions and Enstrophy Defects in 2D Turbulence, Archive for Rational Mechanics and Analysis, Volume 179 (2006) no. 3, p. 353 | DOI:10.1007/s00205-005-0390-5
  • Chae, Dongho On the Spectral Dynamics of the Deformation Tensor and New A Priori Estimates for the 3D Euler Equations, Communications in Mathematical Physics, Volume 263 (2006) no. 3, p. 789 | DOI:10.1007/s00220-005-1465-8
  • Wu, Sijue Mathematical analysis of vortex sheets, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 8, p. 1065 | DOI:10.1002/cpa.20110
  • Lopes Filho, Milton C.; Lowengrub, John; Nussenzveig Lopes, Helena J.; Zheng, Yuxi Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 40 (2006) no. 2, p. 225 | DOI:10.1051/m2an:2006012
  • Taniuchi, Yasushi Remarks on Global Solvability of 2-D Boussinesq Equations with Non-Decaying Initial Data, Funkcialaj Ekvacioj, Volume 49 (2006) no. 1, p. 39 | DOI:10.1619/fesi.49.39
  • Cannone, Marco Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations, Volume 3 (2005), p. 161 | DOI:10.1016/s1874-5792(05)80006-0
  • Chemin, Jean-Yves Two-Dimensional Euler System and the Vortex Patches Problem, Volume 3 (2005), p. 83 | DOI:10.1016/s1874-5792(05)80005-9
  • Paicu, Marius Équation Périodique de Navier–Stokes sans Viscosité dans une Direction, Communications in Partial Differential Equations, Volume 30 (2005) no. 8, p. 1107 | DOI:10.1080/036053005002575529
  • Wu, Jiahong The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity, Volume 18 (2005) no. 1, p. 139 | DOI:10.1088/0951-7715/18/1/008
  • Filho, M. C. Lopes; Lopes, H. J. Nussenzveig; Planas, G. On the Inviscid Limit for Two-Dimensional Incompressible Flow with Navier Friction Condition, SIAM Journal on Mathematical Analysis, Volume 36 (2005) no. 4, p. 1130 | DOI:10.1137/s0036141003432341
  • Taniuchi, Yasushi Uniformly Local L p Estimate for 2-D Vorticity Equation and Its Application to Euler Equations with Initial Vorticity in bmo, Communications in Mathematical Physics, Volume 248 (2004) no. 1, p. 169 | DOI:10.1007/s00220-004-1095-6
  • Busuioc, Adriana Valentina; Ratiu, T. S. A Fluid Problem with Navier-Slip Boundary Conditions, Complementarity, Duality and Symmetry in Nonlinear Mechanics, Volume 6 (2004), p. 241 | DOI:10.1007/978-90-481-9577-0_14
  • Ogawa, Takayoshi; Taniuchi, Yasushi On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, Journal of Differential Equations, Volume 190 (2003) no. 1, p. 39 | DOI:10.1016/s0022-0396(03)00013-5
  • Dutrifoy, Alexandre Precise regularity results for the Euler equations, Journal of Mathematical Analysis and Applications, Volume 282 (2003) no. 1, p. 177 | DOI:10.1016/s0022-247x(03)00135-5
  • KOZONO, Hideo; OGAWA, Takayoshi; TANIUCHI, Yasushi NAVIER-STOKES EQUATIONS IN THE BESOV SPACE NEAR L∞ AND BMO, Kyushu Journal of Mathematics, Volume 57 (2003) no. 2, p. 303 | DOI:10.2206/kyushujm.57.303
  • Busuioc, Adriana Valentina; Ratiu, Tudor S The second grade fluid and averaged Euler equations with Navier-slip boundary conditions, Nonlinearity, Volume 16 (2003) no. 3, p. 1119 | DOI:10.1088/0951-7715/16/3/318
  • Chae, Dongho On the well‐posedness of the Euler equations in the Triebel‐Lizorkin spaces, Communications on Pure and Applied Mathematics, Volume 55 (2002) no. 5, p. 654 | DOI:10.1002/cpa.10029
  • Aassila, Mohammed Calcul pseudo-différentiel et équations d'évolution non linéaires sur les variétés compactes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 333 (2001) no. 7, p. 617 | DOI:10.1016/s0764-4442(01)02106-1
  • Eyink, Gregory L Dissipation in turbulent solutions of 2D Euler equations, Nonlinearity, Volume 14 (2001) no. 4, p. 787 | DOI:10.1088/0951-7715/14/4/307
  • Cannone, Marco Viscous Flows in Besov Spaces, Advances in Mathematical Fluid Mechanics (2000), p. 1 | DOI:10.1007/978-3-642-57308-8_1
  • Lopes Filho, Milton C; Tadmor, Eitan; Nussenzveig Lopes, Helena J Approximate solutions of the incompressible Euler equations with no concentrations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 17 (2000) no. 3, p. 371 | DOI:10.1016/s0294-1449(00)00113-x

Cité par 94 documents. Sources : Crossref