On établit un théorème d’approximation qui implique que tout sous-ensemble compact de
This note contains an approximation theorem that implies that every compact subset of
@article{AIF_2000__50_2_677_0, author = {Rosay, Jean-Pierre and Stout, Edgar Lee}, title = {An approximation theorem related to good compact sets in the sense of {Martineau}}, journal = {Annales de l'Institut Fourier}, pages = {677--687}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {2}, year = {2000}, doi = {10.5802/aif.1768}, mrnumber = {2001g:32026}, zbl = {0964.32010}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1768/} }
TY - JOUR AU - Rosay, Jean-Pierre AU - Stout, Edgar Lee TI - An approximation theorem related to good compact sets in the sense of Martineau JO - Annales de l'Institut Fourier PY - 2000 SP - 677 EP - 687 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1768/ DO - 10.5802/aif.1768 LA - en ID - AIF_2000__50_2_677_0 ER -
%0 Journal Article %A Rosay, Jean-Pierre %A Stout, Edgar Lee %T An approximation theorem related to good compact sets in the sense of Martineau %J Annales de l'Institut Fourier %D 2000 %P 677-687 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1768/ %R 10.5802/aif.1768 %G en %F AIF_2000__50_2_677_0
Rosay, Jean-Pierre; Stout, Edgar Lee. An approximation theorem related to good compact sets in the sense of Martineau. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 677-687. doi : 10.5802/aif.1768. https://www.numdam.org/articles/10.5802/aif.1768/
[1] Holomorphic completions, analytic continuations, and the interpolation of semi-norms, Ann. Math., 78 (1963), 468-500. | Zbl
,[2] Every compact set in ℂn is a good compact set, Ann. Inst. Fourier, Grenoble, 20-1 (1970), 493-498. | Numdam | Zbl
,[3] Introduction to Holomorphic Functions of Several Complex Variables, vol. I, Wadsworth and Brooks-Cole, Belmont, 1990.
,[4] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR | Zbl
and ,[5] Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., XI (1963), 1-164. (Also contained in the Œuvres of Martineau). | MR | Zbl
,[6] Strong boundary values, analytic functionals and nonlinear Paley-Wiener theory, to appear.
and ,[7] Algebras of analytic germs, Trans. Amer. Math. Soc., 174 (1972), 275-288. | MR | Zbl
,Cité par Sources :