Soit un compact d’un ouvert dans . On démontre l’existence d’un voisinage de qui satisfait la condition suivante : si est holomorphe sur et s’il existe une suite des polynomes qui approchent uniformément sur un voisinage ouvert de , il existe une suite de polynômes qui approchent uniformément sur
Let be an compact subset of an open set in . We show the existence of an open neighborhood of satisfying the following condition : if is holomorphic in and if there exists a sequence of polynomials which approximate uniformly in some open neighborhood of , there exists a sequence of polynomial which approximate uniformly in .
@article{AIF_1970__20_1_493_0, author = {Bj\"ork, Jan Erik}, title = {Every compact set in ${\bf C}^n$ is a good compact set}, journal = {Annales de l'Institut Fourier}, pages = {493--498}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {1}, year = {1970}, doi = {10.5802/aif.348}, mrnumber = {41 #7154}, zbl = {0188.39003}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.348/} }
TY - JOUR AU - Björk, Jan Erik TI - Every compact set in ${\bf C}^n$ is a good compact set JO - Annales de l'Institut Fourier PY - 1970 SP - 493 EP - 498 VL - 20 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.348/ DO - 10.5802/aif.348 LA - en ID - AIF_1970__20_1_493_0 ER -
Björk, Jan Erik. Every compact set in ${\bf C}^n$ is a good compact set. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 493-498. doi : 10.5802/aif.348. http://www.numdam.org/articles/10.5802/aif.348/