Nous améliorons un résultat de Chui et Parnes et nous démontrons que les séries de Taylor universelles forment un sous-espace
We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a
@article{AIF_1996__46_5_1293_0, author = {Nestoridis, Vassili}, title = {Universal {Taylor} series}, journal = {Annales de l'Institut Fourier}, pages = {1293--1306}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {5}, year = {1996}, doi = {10.5802/aif.1549}, mrnumber = {97k:30001}, zbl = {0865.30001}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1549/} }
TY - JOUR AU - Nestoridis, Vassili TI - Universal Taylor series JO - Annales de l'Institut Fourier PY - 1996 SP - 1293 EP - 1306 VL - 46 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1549/ DO - 10.5802/aif.1549 LA - en ID - AIF_1996__46_5_1293_0 ER -
Nestoridis, Vassili. Universal Taylor series. Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1293-1306. doi : 10.5802/aif.1549. https://www.numdam.org/articles/10.5802/aif.1549/
[1] A Treatise on Trigonometric Series, Vol. I, II, Pergamon Press, 1964. | MR | Zbl
,[2] Approximation by overconvergence of power series, Journal of Mathematical Analysis and Applications, 36 (1971), 693-696. | MR | Zbl
, ,[3] Limit set of power series outside the circles of convergence, Pacific Journal of Mathematics, 50 (1974), 403-423. | MR | Zbl
, ,[4] The Taylor Series, Dover Pub. Inc., New York, 1957. | Zbl
,[5] Sur la structure circulaire des ensembles de points limites des sommes partielles d'une série de Taylor, Acta Sci. Math. (Szeged), 45, n° 1-4 (1983), 247-251. | MR | Zbl
,[6] On a theorem of Marcinkiewicz and Zygmund for Taylor series, Arkiv for Matematik, 27, n° 1 (1989) 105-126. | MR | Zbl
,[7] Partial sums of Taylor series on a circle, Ann. Inst. Fourier, 38-3 (1989), 715-736. | Numdam | MR | Zbl
, ,[8] Taylor series with limit points on a finite number of circles, Transactions of A.M.S., 337, n° 1 (1993), 437-450. | MR | Zbl
,[9] An application of Kronecker's Theorem to rational functions, Math. Ann., 298 (1994), 145-166. | MR | Zbl
, ,[10] An Introduction to Harmonic Analysis, John Wiley & Sons Inc., New York, London, Sydney, Toronto, 1968. | MR | Zbl
,[11] Sur certaines singularités des fonctions analytiques uniformes, Fundamental Mathematicae, 21 (1933), 267-294. | JFM | Zbl
, ,[12] On the behaviour of triginometric series and power series, Transactions of A.M.S., 50 (1941), 407-453. | JFM | MR | Zbl
, ,[13] Sur les séries Trigonométriques Universelles, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XLIX, n° 2 (1945), 79-82. | MR | Zbl
,[14] Limit points of partial sums of Taylor series, Matematika, 38 (1991), 239-249. | MR | Zbl
,[15] Distribution of partial sums of the Taylor development of rational functions, Transactions of A.M.S., 346, n° 1 (1994), 283-295. | MR | Zbl
,[16] The circular structure of the set of limit points of partial sums of Taylor series, Séminaire d'Analyse Harmonique, Université de Paris-Sud, Mathématiques, Orsay, France (1989-1990), 71-77. | MR | Zbl
, ,[17] Real and Complex Analysis, McGraw-Hill, New York, 1966. | MR | Zbl
,[18] Trigonometric Series, second edition reprinted, Vol. I, II, Cambridge University Press, 1979.
,- On universal quotient Blaschke products, Complex Variables and Elliptic Equations, Volume 70 (2025) no. 3, p. 456 | DOI:10.1080/17476933.2024.2310231
- Using the Long Functional Series in Technical Systems and Increasing Their Efficiency Due to Recurrent Formulae, Advances in Automation V, Volume 1130 (2024), p. 117 | DOI:10.1007/978-3-031-51127-1_11
- Taylor Polynomials in a High Arithmetic Precision as Universal Approximators, Computation, Volume 12 (2024) no. 3, p. 53 | DOI:10.3390/computation12030053
- Abel universal functions, Canadian Journal of Mathematics, Volume 75 (2023) no. 6, p. 1957 | DOI:10.4153/s0008414x22000578
- On the Universality of Sequences of Differential Operators Related to Taylor Series, Computational Methods and Function Theory, Volume 23 (2023) no. 3, p. 523 | DOI:10.1007/s40315-022-00466-0
- Universal Taylor Series in Several Variables Depending on Parameters, Computational Methods and Function Theory, Volume 22 (2022) no. 2, p. 261 | DOI:10.1007/s40315-021-00392-7
- Universal radial approximation in spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126102 | DOI:10.1016/j.jmaa.2022.126102
- A strong form of Plessner's theorem, Advances in Mathematics, Volume 376 (2021), p. 107489 | DOI:10.1016/j.aim.2020.107489
- One-sided extendability of bounded functions, Complex Analysis and its Synergies, Volume 7 (2021) no. 2 | DOI:10.1007/s40627-021-00076-x
- Universal Taylor series on products of planar domains, Complex Analysis and its Synergies, Volume 7 (2021) no. 2 | DOI:10.1007/s40627-021-00073-0
- Generic Boundary Behaviour of Taylor Series in Banach Spaces of Holomorphic Functions, Extended Abstracts Fall 2019, Volume 12 (2021), p. 137 | DOI:10.1007/978-3-030-74417-5_20
- Concurrent universal Padé approximation, Journal of Mathematical Analysis and Applications, Volume 497 (2021) no. 2, p. 124911 | DOI:10.1016/j.jmaa.2020.124911
- Universal Taylor series with respect to a prescribed subsequence, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 1, p. 124953 | DOI:10.1016/j.jmaa.2021.124953
- Generalized harmonic functions on trees: Universality and frequent universality, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 1, p. 125277 | DOI:10.1016/j.jmaa.2021.125277
- Universal partial sums of Taylor series as functions of the centre of expansion, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 2, p. 306 | DOI:10.1080/17476933.2019.1611791
- Holomorphic functions with universal boundary behaviour, Journal of Approximation Theory, Volume 254 (2020), p. 105391 | DOI:10.1016/j.jat.2020.105391
- Simultaneous zero-free approximation and universal optimal polynomial approximants, Journal of Approximation Theory, Volume 256 (2020), p. 105389 | DOI:10.1016/j.jat.2020.105389
- Algebraic genericity of frequently universal harmonic functions on trees, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 1, p. 124132 | DOI:10.1016/j.jmaa.2020.124132
- Partially smooth universal Taylor series on products of simply connected domains, Monatshefte für Mathematik, Volume 193 (2020) no. 3, p. 657 | DOI:10.1007/s00605-020-01436-1
- An Extension of the Universal Power Series of Seleznev, Results in Mathematics, Volume 75 (2020) no. 4 | DOI:10.1007/s00025-020-01262-9
- Potential theory and approximation: highlights from the scientific work of Stephen Gardiner, Analysis and Mathematical Physics, Volume 9 (2019) no. 2, p. 679 | DOI:10.1007/s13324-019-00325-7
- From universality to generic non-extendability and total unboundedness in spaces of holomorphic functions, Analysis and Mathematical Physics, Volume 9 (2019) no. 2, p. 887 | DOI:10.1007/s13324-019-00315-9
- On countably universal series in the complex plane, Complex Variables and Elliptic Equations, Volume 64 (2019) no. 6, p. 1025 | DOI:10.1080/17476933.2018.1501684
- Universal Laurent series smooth up to a part of the boundary, Complex Variables and Elliptic Equations, Volume 64 (2019) no. 6, p. 899 | DOI:10.1080/17476933.2018.1487409
- Universality of sequences of operators related to Taylor series, Journal of Mathematical Analysis and Applications, Volume 474 (2019) no. 1, p. 480 | DOI:10.1016/j.jmaa.2019.01.056
- Some properties of universal Dirichlet series, Monatshefte für Mathematik, Volume 189 (2019) no. 3, p. 487 | DOI:10.1007/s00605-018-1208-5
- Universal Taylor Series Without Baire and the Influence of J.-P. Kahane, Analysis Mathematica, Volume 44 (2018) no. 2, p. 237 | DOI:10.1007/s10476-018-0208-y
- On the boundary behaviour of derivatives of functions in the disc algebra, Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, p. 732 | DOI:10.1016/j.crma.2018.05.015
- On doubly universal functions, Journal of Approximation Theory, Volume 226 (2018), p. 1 | DOI:10.1016/j.jat.2017.11.001
- Universal Laurent expansions of harmonic functions, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, p. 281 | DOI:10.1016/j.jmaa.2017.09.006
- Boundedness of derivatives and anti-derivatives of holomorphic functions as a rare phenomenon, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1073 | DOI:10.1016/j.jmaa.2017.08.025
- Families of Universal Taylor Series Depending on a Parameter, New Trends in Approximation Theory, Volume 81 (2018), p. 201 | DOI:10.1007/978-1-4939-7543-3_10
- Taylor Series, Universality and Potential Theory, New Trends in Approximation Theory, Volume 81 (2018), p. 247 | DOI:10.1007/978-1-4939-7543-3_14
- Disjoint hypercyclicity equals disjoint supercyclicity for families of Taylor-type operators, Open Mathematics, Volume 16 (2018) no. 1, p. 597 | DOI:10.1515/math-2018-0054
- ON THE FREQUENT UNIVERSALITY OF UNIVERSAL TAYLOR SERIES IN THE COMPLEX PLANE, Glasgow Mathematical Journal, Volume 59 (2017) no. 1, p. 109 | DOI:10.1017/s0017089516000069
- Universal properties of harmonic functions on trees, Journal of Mathematical Analysis and Applications, Volume 445 (2017) no. 2, p. 1181 | DOI:10.1016/j.jmaa.2016.03.078
- Disjoint universality for families of Taylor-type operators, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1318 | DOI:10.1016/j.jmaa.2016.11.057
- Universal Padé approximants and their behaviour on the boundary, Monatshefte für Mathematik, Volume 182 (2017) no. 1, p. 173 | DOI:10.1007/s00605-016-0935-8
- Boundary behaviour of Dirichlet series with applications to universal series, Bulletin of the London Mathematical Society, Volume 48 (2016) no. 5, p. 735 | DOI:10.1112/blms/bdw037
- Doubly universal Taylor series on simply connected domains, European Journal of Mathematics, Volume 2 (2016) no. 4, p. 1031 | DOI:10.1007/s40879-016-0114-4
- Polynomial inequalities and universal Taylor series, Mathematische Zeitschrift, Volume 284 (2016) no. 3-4, p. 919 | DOI:10.1007/s00209-016-1679-9
- Generalized universal series, Monatshefte für Mathematik, Volume 179 (2016) no. 1, p. 15 | DOI:10.1007/s00605-015-0764-1
- Universal Taylor series on convex subsets of, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 11, p. 1567 | DOI:10.1080/17476933.2015.1036048
- Padé approximants, density of rational functions in A∞(Ω) and smoothness of the integration operator, Journal of Mathematical Analysis and Applications, Volume 423 (2015) no. 2, p. 1514 | DOI:10.1016/j.jmaa.2014.10.017
- Zeros of Polynomials in Banach Spaces, Lineability (2015), p. 229 | DOI:10.1201/b19277-10
- Generic properties of Padé approximants and Padé universal series, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 427 | DOI:10.1007/s00209-015-1493-9
- A convergence theorem for harmonic measures with applications to Taylor series, Proceedings of the American Mathematical Society, Volume 144 (2015) no. 3, p. 1109 | DOI:10.1090/proc/12764
- Universal Taylor series and summability, Revista Matemática Complutense, Volume 28 (2015) no. 1, p. 153 | DOI:10.1007/s13163-014-0156-4
- Boundary Behaviour of Universal Taylor Series on Multiply Connected Domains, Constructive Approximation, Volume 40 (2014) no. 2, p. 259 | DOI:10.1007/s00365-014-9237-3
- Doubly universal Taylor series, Journal of Approximation Theory, Volume 180 (2014), p. 21 | DOI:10.1016/j.jat.2013.12.006
- Universal Laurent series on domains of infinite connectivity, Proceedings of the American Mathematical Society, Volume 142 (2014) no. 9, p. 3139 | DOI:10.1090/s0002-9939-2014-12058-2
- Universal functions as series of rational functions, Revista Matemática Complutense, Volume 27 (2014) no. 1, p. 225 | DOI:10.1007/s13163-013-0116-4
- Universal Padé approximants of Seleznev type, Archiv der Mathematik, Volume 100 (2013) no. 6, p. 571 | DOI:10.1007/s00013-013-0519-y
- Boundary behaviour of universal Taylor series, Comptes Rendus. Mathématique, Volume 352 (2013) no. 2, p. 99 | DOI:10.1016/j.crma.2013.12.008
- UPPER AND LOWER FREQUENTLY UNIVERSAL SERIES, Glasgow Mathematical Journal, Volume 55 (2013) no. 3, p. 615 | DOI:10.1017/s001708951200078x
- Generic approximation of functions by their Padé approximants, Journal of Mathematical Analysis and Applications, Volume 408 (2013) no. 2, p. 744 | DOI:10.1016/j.jmaa.2013.06.048
- Determination of a Universal Series, Computational Methods and Function Theory, Volume 12 (2012) no. 1, p. 173 | DOI:10.1007/bf03321821
- Universality and Cesàro Summability Emmanouil Katsoprinakis, Vasilis Nestoridis and Christos Papachristo doulos, Computational Methods and Function Theory, Volume 12 (2012) no. 2, p. 419 | DOI:10.1007/bf03321836
- Existence of Universal Taylor Series for Nonsimply Connected Domains, Constructive Approximation, Volume 35 (2012) no. 2, p. 245 | DOI:10.1007/s00365-011-9133-z
- Lineability of Universal Divergence of Fourier Series, Integral Equations and Operator Theory, Volume 74 (2012) no. 2, p. 271 | DOI:10.1007/s00020-012-1984-6
- Interpolation by universal, hypercyclic functions, Journal of Approximation Theory, Volume 164 (2012) no. 5, p. 625 | DOI:10.1016/j.jat.2012.01.006
- Universal Padé approximants with respect to the chordal metric, Journal of Contemporary Mathematical Analysis, Volume 47 (2012) no. 4, p. 168 | DOI:10.3103/s1068362312040024
- A generalization of universal Taylor series in simply connected domains, Journal of Mathematical Analysis and Applications, Volume 388 (2012) no. 1, p. 361 | DOI:10.1016/j.jmaa.2011.11.038
- Universal Power Series in ℂN, Canadian Mathematical Bulletin, Volume 54 (2011) no. 2, p. 230 | DOI:10.4153/cmb-2011-009-3
- Universal Faber and Taylor series on an unbounded domain of infinite connectivity, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 6, p. 533 | DOI:10.1080/17476933.2010.504832
- Universal Rational Expansions of Meromorphic Functions, Computational Methods and Function Theory, Volume 11 (2011) no. 1, p. 317 | DOI:10.1007/bf03321806
- Summability of Elongated Sequences, Computational Methods and Function Theory, Volume 11 (2011) no. 1, p. 59 | DOI:10.1007/bf03321790
- Universality properties of Taylor series inside the domain of holomorphy, Journal of Mathematical Analysis and Applications, Volume 383 (2011) no. 1, p. 234 | DOI:10.1016/j.jmaa.2011.05.020
- Continuous functions with universally divergent Fourier series on small subsets of the circle, Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, p. 1155 | DOI:10.1016/j.crma.2010.10.026
- Universal Taylor series for non-simply connected domains, Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, p. 521 | DOI:10.1016/j.crma.2010.03.003
- Universal p-adic series, Comptes Rendus. Mathématique, Volume 349 (2010) no. 1-2, p. 39 | DOI:10.1016/j.crma.2010.12.006
- The Hadamard Product as a Universality Preserving Operator, Computational Methods and Function Theory, Volume 10 (2010) no. 1, p. 281 | DOI:10.1007/bf03321768
- Simultaneous approximation by universal series, Mathematische Nachrichten, Volume 283 (2010) no. 6, p. 909 | DOI:10.1002/mana.200710021
- Universal Taylor series on arbitrary planar domains, Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, p. 363 | DOI:10.1016/j.crma.2009.02.007
- Density problems connected with overconvergence, Journal of Contemporary Mathematical Analysis, Volume 44 (2009) no. 4, p. 252 | DOI:10.3103/s1068362309040062
- Extended abstract theory of universal series and applications, Monatshefte für Mathematik, Volume 158 (2009) no. 2, p. 151 | DOI:10.1007/s00605-008-0038-2
- Universal Inner Functions on the Ball, Canadian Mathematical Bulletin, Volume 51 (2008) no. 4, p. 481 | DOI:10.4153/cmb-2008-048-8
- Rational approximation and universality for a quasilinear parabolic equation, Journal of Contemporary Mathematical Analysis, Volume 43 (2008) no. 6, p. 353 | DOI:10.3103/s1068362308060058
- On universal formal power series, Journal of Mathematical Analysis and Applications, Volume 338 (2008) no. 1, p. 662 | DOI:10.1016/j.jmaa.2007.05.051
- Universal functions are automatically universal in the sense of Menchoff, Complex Variables and Elliptic Equations, Volume 52 (2007) no. 4, p. 307 | DOI:10.1080/17476930600961954
- Universal Taylor series on open subsets of Rn, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.401
- Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.287
- Universal Taylor series on non-simply connected domains, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.347
- Universal Taylor series on unbounded open sets, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.323
- Construction of a Universal Laurent Series, Computational Methods and Function Theory, Volume 5 (2006) no. 2, p. 365 | DOI:10.1007/bf03321103
- Universal Taylor Series in Simply Connected Domains, Computational Methods and Function Theory, Volume 6 (2006) no. 2, p. 437 | DOI:10.1007/bf03321621
- Universal approximation theorem for Dirichlet series, International Journal of Mathematics and Mathematical Sciences, Volume 2006 (2006) no. 1 | DOI:10.1155/ijmms/2006/37014
- Smooth Universal Taylor Series, Monatshefte für Mathematik, Volume 147 (2006) no. 3, p. 249 | DOI:10.1007/s00605-005-0323-2
- Faber series with Ostrowski gaps, Complex Variables, Theory and Application: An International Journal, Volume 50 (2005) no. 2, p. 79 | DOI:10.1080/02781070412331332517
- Abstract theory of universal series and an application to Dirichlet series, Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, p. 539 | DOI:10.1016/j.crma.2005.09.028
- Identical approximative sequence for various notions of universality, Journal of Approximation Theory, Volume 132 (2005) no. 1, p. 15 | DOI:10.1016/j.jat.2004.10.004
- Universal Taylor series on doubly connected domains with respect to every center, Journal of Approximation Theory, Volume 134 (2005) no. 1, p. 1 | DOI:10.1016/j.jat.2004.09.003
- Linearity of sets of strange functions, Michigan Mathematical Journal, Volume 53 (2005) no. 2 | DOI:10.1307/mmj/1123090769
- Universal Transforms of the Geometric Series under Generalized Riesz Methods, Computational Methods and Function Theory, Volume 3 (2004) no. 1, p. 285 | DOI:10.1007/bf03321038
- Universal Overconvergence of Polynomial Expansions of Harmonic Functions, Journal of Approximation Theory, Volume 118 (2002) no. 2, p. 225 | DOI:10.1006/jath.2002.3718
- Universality of Taylor Series as a Generic Property of Holomorphic Functions, Advances in Mathematics, Volume 157 (2001) no. 2, p. 138 | DOI:10.1006/aima.2000.1955
- On various types of universal taylor series, Complex Variables, Theory and Application: An International Journal, Volume 44 (2001) no. 3, p. 245 | DOI:10.1080/17476930108815357
- Probabilities and Baire’s theory in harmonic analysis, Twentieth Century Harmonic Analysis — A Celebration (2001), p. 57 | DOI:10.1007/978-94-010-0662-0_3
- On the existence of O-universal functions, Complex Variables, Theory and Application: An International Journal, Volume 41 (2000) no. 1, p. 81 | DOI:10.1080/17476930008815238
- Baire’s category theorem and trigonometric series, Journal d'Analyse Mathématique, Volume 80 (2000) no. 1, p. 143 | DOI:10.1007/bf02791536
- On the growth of universal functions, Journal d'Analyse Mathématique, Volume 82 (2000) no. 1, p. 1 | DOI:10.1007/bf02791219
- Universal families and hypercyclic operators, Bulletin of the American Mathematical Society, Volume 36 (1999) no. 3, p. 345 | DOI:10.1090/s0273-0979-99-00788-0
- Extensions of a theorem of Marcinkiewicz-Zygmund and of Rogosinski’s formula and an application to Universal Taylor series, Proceedings of the American Mathematical Society, Volume 127 (1999) no. 7, p. 2083 | DOI:10.1090/s0002-9939-99-05150-3
- Growth of coefficients of universal Taylor series and comparison of two classes of functions, Journal d'Analyse Mathématique, Volume 73 (1997) no. 1, p. 187 | DOI:10.1007/bf02788143
- General properties of taylor series 1896–1996, The Journal of Fourier Analysis and Applications, Volume 3 (1997) no. S1, p. 907 | DOI:10.1007/bf02656494
Cité par 105 documents. Sources : Crossref