Universal Taylor series
Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1293-1306.

Nous améliorons un résultat de Chui et Parnes et nous démontrons que les séries de Taylor universelles forment un sous-espace Gδ-dense de l’espace de fonctions holomorphes définies sur le disque unité ouvert. Nous utilisons ce résultat pour répondre à une question de S.K. Pichorides sur l’ensemble limite des séries de Taylor. Nous étudions aussi quelques propriétés des séries de Taylor universelles; en particulier, ce sont des séries trigonométriques universelles au sens de Menchoff.

We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a Gδ-dense subset of the space of holomorphic functions defined in the open unit disc. Our result provides the answer to a question stated by S.K. Pichorides concerning the limit set of Taylor series. Moreover, we study some properties of universal Taylor series and show, in particular, that they are trigonometric series in the sense of D. Menchoff.

@article{AIF_1996__46_5_1293_0,
     author = {Nestoridis, Vassili},
     title = {Universal {Taylor} series},
     journal = {Annales de l'Institut Fourier},
     pages = {1293--1306},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {46},
     number = {5},
     year = {1996},
     doi = {10.5802/aif.1549},
     mrnumber = {97k:30001},
     zbl = {0865.30001},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1549/}
}
TY  - JOUR
AU  - Nestoridis, Vassili
TI  - Universal Taylor series
JO  - Annales de l'Institut Fourier
PY  - 1996
SP  - 1293
EP  - 1306
VL  - 46
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1549/
DO  - 10.5802/aif.1549
LA  - en
ID  - AIF_1996__46_5_1293_0
ER  - 
%0 Journal Article
%A Nestoridis, Vassili
%T Universal Taylor series
%J Annales de l'Institut Fourier
%D 1996
%P 1293-1306
%V 46
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1549/
%R 10.5802/aif.1549
%G en
%F AIF_1996__46_5_1293_0
Nestoridis, Vassili. Universal Taylor series. Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1293-1306. doi : 10.5802/aif.1549. https://www.numdam.org/articles/10.5802/aif.1549/

[1] N. K. Bary, A Treatise on Trigonometric Series, Vol. I, II, Pergamon Press, 1964. | MR | Zbl

[2] C. Chui, M. N. Parnes, Approximation by overconvergence of power series, Journal of Mathematical Analysis and Applications, 36 (1971), 693-696. | MR | Zbl

[3] C. Chui, M. N. Parnes, Limit set of power series outside the circles of convergence, Pacific Journal of Mathematics, 50 (1974), 403-423. | MR | Zbl

[4] P. Dienes, The Taylor Series, Dover Pub. Inc., New York, 1957. | Zbl

[5] J.-P. Kahane, Sur la structure circulaire des ensembles de points limites des sommes partielles d'une série de Taylor, Acta Sci. Math. (Szeged), 45, n° 1-4 (1983), 247-251. | MR | Zbl

[6] E. S. Katsoprinakis, On a theorem of Marcinkiewicz and Zygmund for Taylor series, Arkiv for Matematik, 27, n° 1 (1989) 105-126. | MR | Zbl

[7] E. S. Katsoprinakis, V. Nestoridis, Partial sums of Taylor series on a circle, Ann. Inst. Fourier, 38-3 (1989), 715-736. | Numdam | MR | Zbl

[8] E. S. Katsoprinakis, Taylor series with limit points on a finite number of circles, Transactions of A.M.S., 337, n° 1 (1993), 437-450. | MR | Zbl

[9] E. S. Katsoprinakis, V. Nestoridis, An application of Kronecker's Theorem to rational functions, Math. Ann., 298 (1994), 145-166. | MR | Zbl

[10] Y. Katznelson, An Introduction to Harmonic Analysis, John Wiley & Sons Inc., New York, London, Sydney, Toronto, 1968. | MR | Zbl

[11] S. Kierst, E. Szpirajn, Sur certaines singularités des fonctions analytiques uniformes, Fundamental Mathematicae, 21 (1933), 267-294. | JFM | Zbl

[12] J. Marcinkiewicz, A. Zygmund, On the behaviour of triginometric series and power series, Transactions of A.M.S., 50 (1941), 407-453. | JFM | MR | Zbl

[13] D. Menchoff, Sur les séries Trigonométriques Universelles, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XLIX, n° 2 (1945), 79-82. | MR | Zbl

[14] V. Nestoridis, Limit points of partial sums of Taylor series, Matematika, 38 (1991), 239-249. | MR | Zbl

[15] V. Nestoridis, Distribution of partial sums of the Taylor development of rational functions, Transactions of A.M.S., 346, n° 1 (1994), 283-295. | MR | Zbl

[16] V. Nestoridis, S. K. Pichorides, The circular structure of the set of limit points of partial sums of Taylor series, Séminaire d'Analyse Harmonique, Université de Paris-Sud, Mathématiques, Orsay, France (1989-1990), 71-77. | MR | Zbl

[17] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966. | MR | Zbl

[18] A. Zygmund, Trigonometric Series, second edition reprinted, Vol. I, II, Cambridge University Press, 1979.

  • Li, Liulan; Qian, Tao; Wang, Shilin On universal quotient Blaschke products, Complex Variables and Elliptic Equations, Volume 70 (2025) no. 3, p. 456 | DOI:10.1080/17476933.2024.2310231
  • Petrova, N. K.; Kutsenko, S. M.; Saltanaeva, E. A. Using the Long Functional Series in Technical Systems and Increasing Their Efficiency Due to Recurrent Formulae, Advances in Automation V, Volume 1130 (2024), p. 117 | DOI:10.1007/978-3-031-51127-1_11
  • Bakas, Nikolaos Taylor Polynomials in a High Arithmetic Precision as Universal Approximators, Computation, Volume 12 (2024) no. 3, p. 53 | DOI:10.3390/computation12030053
  • Charpentier, Stéphane; Mouze, Augustin Abel universal functions, Canadian Journal of Mathematics, Volume 75 (2023) no. 6, p. 1957 | DOI:10.4153/s0008414x22000578
  • Lykoura, V.; Mouze, A.; Vlachou, V. On the Universality of Sequences of Differential Operators Related to Taylor Series, Computational Methods and Function Theory, Volume 23 (2023) no. 3, p. 523 | DOI:10.1007/s40315-022-00466-0
  • Gavrilopoulos, G.; Maronikolakis, K.; Nestoridis, V. Universal Taylor Series in Several Variables Depending on Parameters, Computational Methods and Function Theory, Volume 22 (2022) no. 2, p. 261 | DOI:10.1007/s40315-021-00392-7
  • Maronikolakis, Konstantinos Universal radial approximation in spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126102 | DOI:10.1016/j.jmaa.2022.126102
  • Gardiner, Stephen J.; Manolaki, Myrto A strong form of Plessner's theorem, Advances in Mathematics, Volume 376 (2021), p. 107489 | DOI:10.1016/j.aim.2020.107489
  • Manolaki, Myrto; Maronikolakis, Konstantinos; Nestoridis, Vassili One-sided extendability of bounded functions, Complex Analysis and its Synergies, Volume 7 (2021) no. 2 | DOI:10.1007/s40627-021-00076-x
  • Kioulafa, K.; Kotsovolis, G.; Nestoridis, V. Universal Taylor series on products of planar domains, Complex Analysis and its Synergies, Volume 7 (2021) no. 2 | DOI:10.1007/s40627-021-00073-0
  • Müller, Jürgen Generic Boundary Behaviour of Taylor Series in Banach Spaces of Holomorphic Functions, Extended Abstracts Fall 2019, Volume 12 (2021), p. 137 | DOI:10.1007/978-3-030-74417-5_20
  • Makridis, K.; Nestoridis, V. Concurrent universal Padé approximation, Journal of Mathematical Analysis and Applications, Volume 497 (2021) no. 2, p. 124911 | DOI:10.1016/j.jmaa.2020.124911
  • Mouze, A. Universal Taylor series with respect to a prescribed subsequence, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 1, p. 124953 | DOI:10.1016/j.jmaa.2021.124953
  • Biehler, N.; Nestoridi, E.; Nestoridis, V. Generalized harmonic functions on trees: Universality and frequent universality, Journal of Mathematical Analysis and Applications, Volume 503 (2021) no. 1, p. 125277 | DOI:10.1016/j.jmaa.2021.125277
  • Panagiotis, Christoforos Universal partial sums of Taylor series as functions of the centre of expansion, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 2, p. 306 | DOI:10.1080/17476933.2019.1611791
  • Charpentier, S. Holomorphic functions with universal boundary behaviour, Journal of Approximation Theory, Volume 254 (2020), p. 105391 | DOI:10.1016/j.jat.2020.105391
  • Bénéteau, Catherine; Ivrii, Oleg; Manolaki, Myrto; Seco, Daniel Simultaneous zero-free approximation and universal optimal polynomial approximants, Journal of Approximation Theory, Volume 256 (2020), p. 105389 | DOI:10.1016/j.jat.2020.105389
  • Biehler, N.; Nestoridis, V.; Stavrianidi, A. Algebraic genericity of frequently universal harmonic functions on trees, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 1, p. 124132 | DOI:10.1016/j.jmaa.2020.124132
  • Kotsovolis, Giorgos Partially smooth universal Taylor series on products of simply connected domains, Monatshefte für Mathematik, Volume 193 (2020) no. 3, p. 657 | DOI:10.1007/s00605-020-01436-1
  • Maronikolakis, K.; Nestoridis, V. An Extension of the Universal Power Series of Seleznev, Results in Mathematics, Volume 75 (2020) no. 4 | DOI:10.1007/s00025-020-01262-9
  • Ghergu, Marius; Manolaki, Myrto; Netuka, Ivan; Render, Hermann Potential theory and approximation: highlights from the scientific work of Stephen Gardiner, Analysis and Mathematical Physics, Volume 9 (2019) no. 2, p. 679 | DOI:10.1007/s13324-019-00325-7
  • Nestoridis, Vassili From universality to generic non-extendability and total unboundedness in spaces of holomorphic functions, Analysis and Mathematical Physics, Volume 9 (2019) no. 2, p. 887 | DOI:10.1007/s13324-019-00315-9
  • Charpentier, Stéphane On countably universal series in the complex plane, Complex Variables and Elliptic Equations, Volume 64 (2019) no. 6, p. 1025 | DOI:10.1080/17476933.2018.1501684
  • Makridis, Konstantinos Universal Laurent series smooth up to a part of the boundary, Complex Variables and Elliptic Equations, Volume 64 (2019) no. 6, p. 899 | DOI:10.1080/17476933.2018.1487409
  • Bernal-González, L.; Cabana-Méndez, H.J.; Muñoz-Fernández, G.A.; Seoane-Sepúlveda, J.B. Universality of sequences of operators related to Taylor series, Journal of Mathematical Analysis and Applications, Volume 474 (2019) no. 1, p. 480 | DOI:10.1016/j.jmaa.2019.01.056
  • Mouze, A. Some properties of universal Dirichlet series, Monatshefte für Mathematik, Volume 189 (2019) no. 3, p. 487 | DOI:10.1007/s00605-018-1208-5
  • Nestoridis, V. Universal Taylor Series Without Baire and the Influence of J.-P. Kahane, Analysis Mathematica, Volume 44 (2018) no. 2, p. 237 | DOI:10.1007/s10476-018-0208-y
  • Charpentier, Stéphane; Nestoridis, Vassili On the boundary behaviour of derivatives of functions in the disc algebra, Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, p. 732 | DOI:10.1016/j.crma.2018.05.015
  • Mouze, A. On doubly universal functions, Journal of Approximation Theory, Volume 226 (2018), p. 1 | DOI:10.1016/j.jat.2017.11.001
  • Golitsyna, Mayya Universal Laurent expansions of harmonic functions, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, p. 281 | DOI:10.1016/j.jmaa.2017.09.006
  • Siskaki, Maria Boundedness of derivatives and anti-derivatives of holomorphic functions as a rare phenomenon, Journal of Mathematical Analysis and Applications, Volume 462 (2018) no. 2, p. 1073 | DOI:10.1016/j.jmaa.2017.08.025
  • Abakumov, Evgeny; Müller, Jürgen; Nestoridis, Vassili Families of Universal Taylor Series Depending on a Parameter, New Trends in Approximation Theory, Volume 81 (2018), p. 201 | DOI:10.1007/978-1-4939-7543-3_10
  • Gardiner, Stephen J. Taylor Series, Universality and Potential Theory, New Trends in Approximation Theory, Volume 81 (2018), p. 247 | DOI:10.1007/978-1-4939-7543-3_14
  • Ma, Yingbin; Wang, Cui Disjoint hypercyclicity equals disjoint supercyclicity for families of Taylor-type operators, Open Mathematics, Volume 16 (2018) no. 1, p. 597 | DOI:10.1515/math-2018-0054
  • MOUZE, A.; MUNNIER, V. ON THE FREQUENT UNIVERSALITY OF UNIVERSAL TAYLOR SERIES IN THE COMPLEX PLANE, Glasgow Mathematical Journal, Volume 59 (2017) no. 1, p. 109 | DOI:10.1017/s0017089516000069
  • Abakumov, Evgeny; Nestoridis, Vassili; Picardello, Massimo A. Universal properties of harmonic functions on trees, Journal of Mathematical Analysis and Applications, Volume 445 (2017) no. 2, p. 1181 | DOI:10.1016/j.jmaa.2016.03.078
  • Vlachou, V. Disjoint universality for families of Taylor-type operators, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1318 | DOI:10.1016/j.jmaa.2016.11.057
  • Zadik, Ilias Universal Padé approximants and their behaviour on the boundary, Monatshefte für Mathematik, Volume 182 (2017) no. 1, p. 173 | DOI:10.1007/s00605-016-0935-8
  • Gardiner, Stephen J.; Manolaki, Myrto Boundary behaviour of Dirichlet series with applications to universal series, Bulletin of the London Mathematical Society, Volume 48 (2016) no. 5, p. 735 | DOI:10.1112/blms/bdw037
  • Chatzigiannakidou, Nicky; Vlachou, Vagia Doubly universal Taylor series on simply connected domains, European Journal of Mathematics, Volume 2 (2016) no. 4, p. 1031 | DOI:10.1007/s40879-016-0114-4
  • Mouze, Augustin; Munnier, Vincent Polynomial inequalities and universal Taylor series, Mathematische Zeitschrift, Volume 284 (2016) no. 3-4, p. 919 | DOI:10.1007/s00209-016-1679-9
  • Charpentier, S.; Mouze, A.; Munnier, V. Generalized universal series, Monatshefte für Mathematik, Volume 179 (2016) no. 1, p. 15 | DOI:10.1007/s00605-015-0764-1
  • Daras, Nicholas J.; Nestoridis, Vassili Universal Taylor series on convex subsets of, Complex Variables and Elliptic Equations, Volume 60 (2015) no. 11, p. 1567 | DOI:10.1080/17476933.2015.1036048
  • Nestoridis, Vassili; Zadik, Ilias Padé approximants, density of rational functions in A∞(Ω) and smoothness of the integration operator, Journal of Mathematical Analysis and Applications, Volume 423 (2015) no. 2, p. 1514 | DOI:10.1016/j.jmaa.2014.10.017
  • Zeros of Polynomials in Banach Spaces, Lineability (2015), p. 229 | DOI:10.1201/b19277-10
  • Charpentier, S.; Nestoridis, V.; Wielonsky, F. Generic properties of Padé approximants and Padé universal series, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 427 | DOI:10.1007/s00209-015-1493-9
  • Gardiner, Stephen; Manolaki, Myrto A convergence theorem for harmonic measures with applications to Taylor series, Proceedings of the American Mathematical Society, Volume 144 (2015) no. 3, p. 1109 | DOI:10.1090/proc/12764
  • Charpentier, S.; Mouze, A. Universal Taylor series and summability, Revista Matemática Complutense, Volume 28 (2015) no. 1, p. 153 | DOI:10.1007/s13163-014-0156-4
  • Gardiner, Stephen J.; Manolaki, Myrto Boundary Behaviour of Universal Taylor Series on Multiply Connected Domains, Constructive Approximation, Volume 40 (2014) no. 2, p. 259 | DOI:10.1007/s00365-014-9237-3
  • Costakis, G.; Tsirivas, N. Doubly universal Taylor series, Journal of Approximation Theory, Volume 180 (2014), p. 21 | DOI:10.1016/j.jat.2013.12.006
  • Nestoridis, Vassili Universal Laurent series on domains of infinite connectivity, Proceedings of the American Mathematical Society, Volume 142 (2014) no. 9, p. 3139 | DOI:10.1090/s0002-9939-2014-12058-2
  • Lamprecht, Martin; Nestoridis, Vassili Universal functions as series of rational functions, Revista Matemática Complutense, Volume 27 (2014) no. 1, p. 225 | DOI:10.1007/s13163-013-0116-4
  • Daras, N.; Nestoridis, V.; Papadimitropoulos, C. Universal Padé approximants of Seleznev type, Archiv der Mathematik, Volume 100 (2013) no. 6, p. 571 | DOI:10.1007/s00013-013-0519-y
  • Gardiner, Stephen J.; Khavinson, Dmitry Boundary behaviour of universal Taylor series, Comptes Rendus. Mathématique, Volume 352 (2013) no. 2, p. 99 | DOI:10.1016/j.crma.2013.12.008
  • PAPACHRISTODOULOS, CHRISTOS UPPER AND LOWER FREQUENTLY UNIVERSAL SERIES, Glasgow Mathematical Journal, Volume 55 (2013) no. 3, p. 615 | DOI:10.1017/s001708951200078x
  • Fournodavlos, G.; Nestoridis, V. Generic approximation of functions by their Padé approximants, Journal of Mathematical Analysis and Applications, Volume 408 (2013) no. 2, p. 744 | DOI:10.1016/j.jmaa.2013.06.048
  • Mouze, Augustin; Nestoridis, Vassili; Papadoperakis, Ioannis; Tsirivas, Nikolaos Determination of a Universal Series, Computational Methods and Function Theory, Volume 12 (2012) no. 1, p. 173 | DOI:10.1007/bf03321821
  • Katsoprinakis, Emmanouil; Nestoridis, Vasilis; Papachristodoulos, Christos Universality and Cesàro Summability Emmanouil Katsoprinakis, Vasilis Nestoridis and Christos Papachristo doulos, Computational Methods and Function Theory, Volume 12 (2012) no. 2, p. 419 | DOI:10.1007/bf03321836
  • Gardiner, Stephen J. Existence of Universal Taylor Series for Nonsimply Connected Domains, Constructive Approximation, Volume 35 (2012) no. 2, p. 245 | DOI:10.1007/s00365-011-9133-z
  • Bernal-González, Luis Lineability of Universal Divergence of Fourier Series, Integral Equations and Operator Theory, Volume 74 (2012) no. 2, p. 271 | DOI:10.1007/s00020-012-1984-6
  • Costakis, G.; Vlachou, V. Interpolation by universal, hypercyclic functions, Journal of Approximation Theory, Volume 164 (2012) no. 5, p. 625 | DOI:10.1016/j.jat.2012.01.006
  • Nestoridis, V. Universal Padé approximants with respect to the chordal metric, Journal of Contemporary Mathematical Analysis, Volume 47 (2012) no. 4, p. 168 | DOI:10.3103/s1068362312040024
  • Tsirivas, N. A generalization of universal Taylor series in simply connected domains, Journal of Mathematical Analysis and Applications, Volume 388 (2012) no. 1, p. 361 | DOI:10.1016/j.jmaa.2011.11.038
  • Clouâtre, Raphaël Universal Power Series in ℂN, Canadian Mathematical Bulletin, Volume 54 (2011) no. 2, p. 230 | DOI:10.4153/cmb-2011-009-3
  • Tsirivas, N. Universal Faber and Taylor series on an unbounded domain of infinite connectivity, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 6, p. 533 | DOI:10.1080/17476933.2010.504832
  • Meyrath, Thierry Universal Rational Expansions of Meromorphic Functions, Computational Methods and Function Theory, Volume 11 (2011) no. 1, p. 317 | DOI:10.1007/bf03321806
  • Gharibyan, Tatevik L.; Luh, Wolfgang Summability of Elongated Sequences, Computational Methods and Function Theory, Volume 11 (2011) no. 1, p. 59 | DOI:10.1007/bf03321790
  • Beise, Peter; Meyrath, Thierry; Müller, Jürgen Universality properties of Taylor series inside the domain of holomorphy, Journal of Mathematical Analysis and Applications, Volume 383 (2011) no. 1, p. 234 | DOI:10.1016/j.jmaa.2011.05.020
  • Müller, Jürgen Continuous functions with universally divergent Fourier series on small subsets of the circle, Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, p. 1155 | DOI:10.1016/j.crma.2010.10.026
  • Gardiner, Stephen J.; Tsirivas, Nikolaos Universal Taylor series for non-simply connected domains, Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, p. 521 | DOI:10.1016/j.crma.2010.03.003
  • Mouze, Augustin Universal p-adic series, Comptes Rendus. Mathématique, Volume 349 (2010) no. 1-2, p. 39 | DOI:10.1016/j.crma.2010.12.006
  • Müller, Jürgen; Pohlen, Timo The Hadamard Product as a Universality Preserving Operator, Computational Methods and Function Theory, Volume 10 (2010) no. 1, p. 281 | DOI:10.1007/bf03321768
  • Tsirivas, N. Simultaneous approximation by universal series, Mathematische Nachrichten, Volume 283 (2010) no. 6, p. 909 | DOI:10.1002/mana.200710021
  • Nestoridis, Vassili; Papachristodoulos, Christos Universal Taylor series on arbitrary planar domains, Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, p. 363 | DOI:10.1016/j.crma.2009.02.007
  • Gharibyan, T. L.; Luh, W. Density problems connected with overconvergence, Journal of Contemporary Mathematical Analysis, Volume 44 (2009) no. 4, p. 252 | DOI:10.3103/s1068362309040062
  • Hadjiloucas, Demetris Extended abstract theory of universal series and applications, Monatshefte für Mathematik, Volume 158 (2009) no. 2, p. 151 | DOI:10.1007/s00605-008-0038-2
  • Bayart, Frédéric Universal Inner Functions on the Ball, Canadian Mathematical Bulletin, Volume 51 (2008) no. 4, p. 481 | DOI:10.4153/cmb-2008-048-8
  • Gauthier, P. M.; Tarkhanov, N. Rational approximation and universality for a quasilinear parabolic equation, Journal of Contemporary Mathematical Analysis, Volume 43 (2008) no. 6, p. 353 | DOI:10.3103/s1068362308060058
  • Demanze, Olivier; Mouze, Augustin On universal formal power series, Journal of Mathematical Analysis and Applications, Volume 338 (2008) no. 1, p. 662 | DOI:10.1016/j.jmaa.2007.05.051
  • Koumoullis, G.; Luh, W.; Nestoridis, V. Universal functions are automatically universal in the sense of Menchoff, Complex Variables and Elliptic Equations, Volume 52 (2007) no. 4, p. 307 | DOI:10.1080/17476930600961954
  • Costakis, George; Marias, M.; Nestoridis, V. Universal Taylor series on open subsets of Rn, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.401
  • Gauthier, Paul M.; Tamptse, Innocent Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.287
  • Costakis, George; Vlachou, Vagia Universal Taylor series on non-simply connected domains, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.347
  • Diamantopoulos, E.; Mouratides, Ch.; Tsirivas, N. Universal Taylor series on unbounded open sets, Analysis, Volume 26 (2006) no. 3 | DOI:10.1524/anly.2006.26.99.323
  • Mayenberger, Daniel; Vlachou, Vagia Construction of a Universal Laurent Series, Computational Methods and Function Theory, Volume 5 (2006) no. 2, p. 365 | DOI:10.1007/bf03321103
  • Kariofillis, Christos; Nestoridis, Vassili Universal Taylor Series in Simply Connected Domains, Computational Methods and Function Theory, Volume 6 (2006) no. 2, p. 437 | DOI:10.1007/bf03321621
  • Demanze, O.; Mouze, A. Universal approximation theorem for Dirichlet series, International Journal of Mathematics and Mathematical Sciences, Volume 2006 (2006) no. 1 | DOI:10.1155/ijmms/2006/37014
  • Kariofillis, Ch.; Konstadilaki, Ch.; Nestoridis, V. Smooth Universal Taylor Series, Monatshefte für Mathematik, Volume 147 (2006) no. 3, p. 249 | DOI:10.1007/s00605-005-0323-2
  • Mayenberger, D.; Müller, J. Faber series with Ostrowski gaps, Complex Variables, Theory and Application: An International Journal, Volume 50 (2005) no. 2, p. 79 | DOI:10.1080/02781070412331332517
  • Nestoridis, Vassili; Papadimitropoulos, Chris Abstract theory of universal series and an application to Dirichlet series, Comptes Rendus. Mathématique, Volume 341 (2005) no. 9, p. 539 | DOI:10.1016/j.crma.2005.09.028
  • Costakis, G.; Vlachou, V. Identical approximative sequence for various notions of universality, Journal of Approximation Theory, Volume 132 (2005) no. 1, p. 15 | DOI:10.1016/j.jat.2004.10.004
  • Costakis, George Universal Taylor series on doubly connected domains with respect to every center, Journal of Approximation Theory, Volume 134 (2005) no. 1, p. 1 | DOI:10.1016/j.jat.2004.09.003
  • Bayart, Frédéric Linearity of sets of strange functions, Michigan Mathematical Journal, Volume 53 (2005) no. 2 | DOI:10.1307/mmj/1123090769
  • Bernal-González, Luis; Calderón-Moreno, María C.; Luh, Wolfgang Universal Transforms of the Geometric Series under Generalized Riesz Methods, Computational Methods and Function Theory, Volume 3 (2004) no. 1, p. 285 | DOI:10.1007/bf03321038
  • Armitage, D.H. Universal Overconvergence of Polynomial Expansions of Harmonic Functions, Journal of Approximation Theory, Volume 118 (2002) no. 2, p. 225 | DOI:10.1006/jath.2002.3718
  • Melas, A.; Nestoridis, V. Universality of Taylor Series as a Generic Property of Holomorphic Functions, Advances in Mathematics, Volume 157 (2001) no. 2, p. 138 | DOI:10.1006/aima.2000.1955
  • Melas, Antonios; Nestoridis, Vassili On various types of universal taylor series, Complex Variables, Theory and Application: An International Journal, Volume 44 (2001) no. 3, p. 245 | DOI:10.1080/17476930108815357
  • Kahane, J.-P. Probabilities and Baire’s theory in harmonic analysis, Twentieth Century Harmonic Analysis — A Celebration (2001), p. 57 | DOI:10.1007/978-94-010-0662-0_3
  • Gehlen, Wolfgang; Luh, Wolfgang; Müller, Jürgen On the existence of O-universal functions, Complex Variables, Theory and Application: An International Journal, Volume 41 (2000) no. 1, p. 81 | DOI:10.1080/17476930008815238
  • Kahane, Jean-Pierre Baire’s category theorem and trigonometric series, Journal d'Analyse Mathématique, Volume 80 (2000) no. 1, p. 143 | DOI:10.1007/bf02791536
  • Melas, Antonios D. On the growth of universal functions, Journal d'Analyse Mathématique, Volume 82 (2000) no. 1, p. 1 | DOI:10.1007/bf02791219
  • Grosse-Erdmann, Karl-Goswin Universal families and hypercyclic operators, Bulletin of the American Mathematical Society, Volume 36 (1999) no. 3, p. 345 | DOI:10.1090/s0273-0979-99-00788-0
  • Katsoprinakis, E.; Papadimitrakis, M. Extensions of a theorem of Marcinkiewicz-Zygmund and of Rogosinski’s formula and an application to Universal Taylor series, Proceedings of the American Mathematical Society, Volume 127 (1999) no. 7, p. 2083 | DOI:10.1090/s0002-9939-99-05150-3
  • Melas, A.; Nestoridis, V.; Papadoperakis, I. Growth of coefficients of universal Taylor series and comparison of two classes of functions, Journal d'Analyse Mathématique, Volume 73 (1997) no. 1, p. 187 | DOI:10.1007/bf02788143
  • Kahane, Jean-Pierre General properties of taylor series 1896–1996, The Journal of Fourier Analysis and Applications, Volume 3 (1997) no. S1, p. 907 | DOI:10.1007/bf02656494

Cité par 105 documents. Sources : Crossref