Lattices and association schemes: a unimodular example without roots in dimension 28
Annales de l'Institut Fourier, Tome 45 (1995) no. 5, pp. 1163-1176.

On peut obtenir certains réseaux intéressants à partir de schémas d’association. Nous construisons un tel réseau sans racines en dimension 28 qui admet Sp(6,𝔽3)·2 comme groupe d’automorphismes.

Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits Sp(6,𝔽3)·2 as its automorphism group.

@article{AIF_1995__45_5_1163_0,
     author = {Bacher, Roland and Venkov, Boris},
     title = {Lattices and association schemes: a unimodular example without roots in dimension 28},
     journal = {Annales de l'Institut Fourier},
     pages = {1163--1176},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {45},
     number = {5},
     year = {1995},
     doi = {10.5802/aif.1490},
     mrnumber = {96j:11093},
     zbl = {0843.11033},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1490/}
}
TY  - JOUR
AU  - Bacher, Roland
AU  - Venkov, Boris
TI  - Lattices and association schemes: a unimodular example without roots in dimension 28
JO  - Annales de l'Institut Fourier
PY  - 1995
SP  - 1163
EP  - 1176
VL  - 45
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1490/
DO  - 10.5802/aif.1490
LA  - en
ID  - AIF_1995__45_5_1163_0
ER  - 
%0 Journal Article
%A Bacher, Roland
%A Venkov, Boris
%T Lattices and association schemes: a unimodular example without roots in dimension 28
%J Annales de l'Institut Fourier
%D 1995
%P 1163-1176
%V 45
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1490/
%R 10.5802/aif.1490
%G en
%F AIF_1995__45_5_1163_0
Bacher, Roland; Venkov, Boris. Lattices and association schemes: a unimodular example without roots in dimension 28. Annales de l'Institut Fourier, Tome 45 (1995) no. 5, pp. 1163-1176. doi : 10.5802/aif.1490. https://www.numdam.org/articles/10.5802/aif.1490/

[Ar] E. Artin, Algèbre géométrique, Gauthiers-Villars, 1962. | Zbl

[Atlas] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.

[Ba] R. Bacher, Tables de réseaux entiers unimodulaires construits comme k-voisins de ℤn (Preprint), Genève, 1994. | Numdam | Zbl

[BCN] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, 1989. | MR | Zbl

[BI] E. Bannai, T. Ito, Algebraic Combinatorics I: Association schemes, Benjamin, 1984. | MR | Zbl

[Bo] R.E. Borcherds, The Leech lattice and other lattices (Thesis), Trinity College, Cambridge, 1984.

[Bo1] R.E. Borcherds, letter (January 1994).

[BV] R. Bacher, B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, preprint.

[Ge] P. Gérardin, Weil representations associated to finite fields, J. Algebra, 46 (1977), 54-101. | MR | Zbl

[Gr] B.H. Gross, Group representations and lattices, J. Amer. Math. Soc., 3 (1990), 929-960. | MR | Zbl

[ST] R. Scharlau, P.H. Tiep, Symplectic groups, symplectic spreads, codes and unimodular lattices, preprint. | Zbl

[Th] J.G. Thompson, Finite groups and even lattices, J. Algebra, 38 (1976), 523-524. | MR | Zbl

[Wa1] H.N. Ward, Representations of symplectic Groups, J. Algebra, 20 (1972), 182-195. | MR | Zbl

[Wa2] H.N. Ward, Quadratic Residue Codes and Symplectic Groups, J. Algebra, 29 (1974), 150-171. | MR | Zbl

  • Scharlau, Rudolf; Tiep, Pham Symplectic group lattices, Transactions of the American Mathematical Society, Volume 351 (1999) no. 5, p. 2101 | DOI:10.1090/s0002-9947-99-02469-1
  • Scharlau, Rudolf; Tiep, Pham Huu Symplectic Groups, Symplectic Spreads, Codes, and Unimodular Lattices, Journal of Algebra, Volume 194 (1997) no. 1, p. 113 | DOI:10.1006/jabr.1996.6902

Cité par 2 documents. Sources : Crossref