Résurgence de Voros et périodes des courbes hyperelliptiques
Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 163-199.

Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros [dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983)] : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme pdq (q=variable de position, p = impulsion classique).

The aim of this article is to formulate in a geometrical way the master idea of Voros [in Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983)] : the solutions of the one dimensional stationary Schrödinger equation with a polynomial potential are exactly encoded in the complex domain by their WKB expansions (formal divergent expansions in powers of Planck’s constant) in a way which can be read in the geometry of periods of the differential form pdq (q= position variable, (p=classicial momentum).

@article{AIF_1993__43_1_163_0,
     author = {Dillinger, H. and Delabaere, E. and Pham, Fr\'ed\'eric},
     title = {R\'esurgence de {Voros} et p\'eriodes des courbes hyperelliptiques},
     journal = {Annales de l'Institut Fourier},
     pages = {163--199},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {1},
     year = {1993},
     doi = {10.5802/aif.1326},
     zbl = {0766.34032},
     mrnumber = {1209700},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.1326/}
}
TY  - JOUR
AU  - Dillinger, H.
AU  - Delabaere, E.
AU  - Pham, Frédéric
TI  - Résurgence de Voros et périodes des courbes hyperelliptiques
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 163
EP  - 199
VL  - 43
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1326/
DO  - 10.5802/aif.1326
LA  - fr
ID  - AIF_1993__43_1_163_0
ER  - 
%0 Journal Article
%A Dillinger, H.
%A Delabaere, E.
%A Pham, Frédéric
%T Résurgence de Voros et périodes des courbes hyperelliptiques
%J Annales de l'Institut Fourier
%D 1993
%P 163-199
%V 43
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1326/
%R 10.5802/aif.1326
%G fr
%F AIF_1993__43_1_163_0
Dillinger, H.; Delabaere, E.; Pham, Frédéric. Résurgence de Voros et périodes des courbes hyperelliptiques. Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 163-199. doi : 10.5802/aif.1326. https://www.numdam.org/articles/10.5802/aif.1326/

[AVG] V. Arnold, A. Varchenko, S. Goussein-Zade, Singularités des applications différentiables, t.2, Éd. MIR Moscou (traduction française), 1986.

[BB] R. Balian, C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys., 85 (1974), 514-545. | MR | Zbl

[BO] C.M. Bender, St. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mc Graw-Hill Book Inc. Company, 1978. | Zbl

[CNP] B. Candelpergher, C. Nosmas, F. Pham, Approche de la résurgence (Actualités Mathématiques, Hermann, à paraître).

[CNP0] B. Candelpergher, C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier, 43, 1 (1993). | Numdam | MR | Zbl

[D] R.B. Dingle, Asymptotic Expansions : Their Derivation and Interpretation, Academic Press, London and New-York, 1973. | MR | Zbl

[DDP] E. Delabaere, H. Dillinger, F. Pham, Exact semi-classical expansions for a one dimensional oscillator (en préparation) ; voir aussi E. Delabaere et H. Dillinger, Thèse de Doctorat, Université de Nice-Sophia-Antipolis, 1991.

[DDP0] E. Delabaere, H. Dillinger, F. Pham, Développements semi-classiques exacts des niveaux d'énergie d'un oscillateur à une dimension, C.R. Acad. Sci. Paris, t. 310, Série I, (1990), 141-146. | MR | Zbl

[E] J. Écalle, Singularités irrégulières et résurgence multiple, dans cinq applications des fonctions résurgentes, preprint 84, t. 62, Orsay.

[E0] J. Écalle, Les fonctions résurgentes, Publ. Math. Université de Paris-Sud, en plusieurs tomes. | Zbl

[Ji] A.O. Jidoumou, Modèles de résurgence paramétrique, Fonctions d'Airy et cylindro-paraboliques, Thèse de Doctorat, 1990, Université de Nice-Sophia-Antipolis, à paraître dans J. Maths Pures Appl. | Zbl

[L] J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III), Bull. Soc. Math. France, 87 (1959), 81-180. | Numdam | MR | Zbl

[LL] L. Landau, E. Lifchitz, Mécanique Quantique, Théorie non relativiste, Éd. MIR Moscou, 1966. | Zbl

[P] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Librairie Albert Blanchard, 1987 (en plusieurs tomes).

[V] A. Voros, The return of the quartic oscillator (the complex WKB method). Annales Institut H. Poincaré, 29, 3 (1983). | Numdam | Zbl

  • Coman, Ioana; Longhi, Pietro; Teschner, Jörg From Quantum Curves to Topological String Partition Functions II, Annales Henri Poincaré (2025) | DOI:10.1007/s00023-025-01538-2
  • Sauzin, David Resurgence and Mould Calculus, Encyclopedia of Mathematical Physics (2025), p. 24 | DOI:10.1016/b978-0-323-95703-8.00037-9
  • Ito, Katsushi; Yang, Jingjing TBA equations and quantum periods for D-type Argyres-Douglas theories, Journal of High Energy Physics, Volume 2025 (2025) no. 1 | DOI:10.1007/jhep01(2025)047
  • Ito, Katsushi; Shu, Hongfei Exact WKB Analysis and TBA Equations, ODE/IM Correspondence and Quantum Periods, Volume 51 (2025), p. 23 | DOI:10.1007/978-981-96-0499-9_2
  • Alekseev, Anton; Neitzke, Andrew; Xu, Xiaomeng; Zhou, Yan WKB Asymptotics of Stokes Matrices, Spectral Curves and Rhombus Inequalities, Communications in Mathematical Physics, Volume 405 (2024) no. 11 | DOI:10.1007/s00220-024-05133-0
  • Ramis, Jean-Pierre Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
  • Kuwagaki, Tatsuki Sheaf quantization from exact WKB analysis, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0041
  • Ito, Katsushi; Shu, Hongfei TBA equations and exact WKB analysis in deformed supersymmetric quantum mechanics, Journal of High Energy Physics, Volume 2024 (2024) no. 3 | DOI:10.1007/jhep03(2024)122
  • Gu, Jie Relations between Stokes constants of unrefined and Nekrasov-Shatashvili topological strings, Journal of High Energy Physics, Volume 2024 (2024) no. 5 | DOI:10.1007/jhep05(2024)199
  • Suzuki, Takayuki; Taniguchi, Eiki; Iwamura, Kaito Exact WKB analysis for adiabatic discrete-level Hamiltonians, Physical Review A, Volume 109 (2024) no. 2 | DOI:10.1103/physreva.109.022225
  • Ito, Katsushi; Yang, Jingjing Exact WKB Analysis and TBA Equations for the Stark Effect, Progress of Theoretical and Experimental Physics, Volume 2024 (2024) no. 1 | DOI:10.1093/ptep/ptad154
  • Yu, Tong-Pu; Liu, Ke; Zhao, Jie; Zhu, Xing-Long; Lu, Yu; Cao, Yue; Zhang, Hao; Shao, Fu-Qiu; Sheng, Zheng-Ming Bright X/γ-ray emission and lepton pair production by strong laser fields: a review, Reviews of Modern Plasma Physics, Volume 8 (2024) no. 1 | DOI:10.1007/s41614-024-00158-3
  • van Spaendonck, Alexander; Vonk, Marcel Exact instanton transseries for quantum mechanics, SciPost Physics, Volume 16 (2024) no. 4 | DOI:10.21468/scipostphys.16.4.103
  • Iwaki, Kohei; Kidwai, Omar Topological Recursion and Uncoupled BPS Structures II: Voros Symbols and the τ-Function, Communications in Mathematical Physics, Volume 399 (2023) no. 1, p. 519 | DOI:10.1007/s00220-022-04563-y
  • Nikolaev, Nikita Existence and Uniqueness of Exact WKB Solutions for Second-Order Singularly Perturbed Linear ODEs, Communications in Mathematical Physics, Volume 400 (2023) no. 1, p. 463 | DOI:10.1007/s00220-022-04603-7
  • Matsuda, Tomohiro Nonperturbative particle production and differential geometry, International Journal of Modern Physics A, Volume 38 (2023) no. 28 | DOI:10.1142/s0217751x23501580
  • Allegretti, Dylan G L On the Wall-Crossing Formula for Quadratic Differentials, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 8033 | DOI:10.1093/imrn/rnac071
  • Enomoto, Seishi; Matsuda, Tomohiro The Exact WKB analysis for asymmetric scalar preheating, Journal of High Energy Physics, Volume 2023 (2023) no. 1 | DOI:10.1007/jhep01(2023)088
  • Bucciotti, Bruno; Reis, Tomas; Serone, Marco An anharmonic alliance: exact WKB meets EPT, Journal of High Energy Physics, Volume 2023 (2023) no. 11 | DOI:10.1007/jhep11(2023)124
  • NIKOLAEV, NIKITA EXACT SOLUTIONS FOR THE SINGULARLY PERTURBED RICCATI EQUATION AND EXACT WKB ANALYSIS, Nagoya Mathematical Journal, Volume 250 (2023), p. 434 | DOI:10.1017/nmj.2022.38
  • Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, H.; Torgrimsson, G. Advances in QED with intense background fields, Physics Reports, Volume 1010 (2023), p. 1 | DOI:10.1016/j.physrep.2023.01.003
  • Aoki, Takashi; Uchida, Shofu Degeneration structure of the Voros coefficients of the generalized hypergeometric differential equations with a large parameter, Recent Trends in Formal and Analytic Solutions of Diff. Equations, Volume 782 (2023), p. 43 | DOI:10.1090/conm/782/15721
  • Gu, Jie; Mariño, Marcos On the resurgent structure of quantum periods, SciPost Physics, Volume 15 (2023) no. 1 | DOI:10.21468/scipostphys.15.1.035
  • Wu, Jingxiang Anisotropic Kondo line defect and ODE/IM correspondence, SciPost Physics, Volume 15 (2023) no. 6 | DOI:10.21468/scipostphys.15.6.248
  • Bertola, Marco; Korotkin, Dmitry; del Monte, Fabrizio Generating Function of Monodromy Symplectomorphism for 2 × 2 Fuchsian Systems and Its WKB Expansion, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 19 (2023) no. 2, p. 301 | DOI:10.15407/mag19.02.301
  • Gaiotto, Davide; Lee, Ji Hoon; Vicedo, Benoît; Wu, Jingxiang Kondo line defects and affine Gaudin models, Journal of High Energy Physics, Volume 2022 (2022) no. 1 | DOI:10.1007/jhep01(2022)175
  • Grassi, Alba; Hao, Qianyu; Neitzke, Andrew Exact WKB methods in SU(2) Nf = 1, Journal of High Energy Physics, Volume 2022 (2022) no. 1 | DOI:10.1007/jhep01(2022)046
  • Enomoto, Seishi; Matsuda, Tomohiro The Exact WKB analysis and the Stokes phenomena of the Unruh effect and Hawking radiation, Journal of High Energy Physics, Volume 2022 (2022) no. 12 | DOI:10.1007/jhep12(2022)037
  • Hashiba, Soichiro; Ling, Siyang; Long, Andrew J. An analytic evaluation of gravitational particle production of fermions via Stokes phenomenon, Journal of High Energy Physics, Volume 2022 (2022) no. 9 | DOI:10.1007/jhep09(2022)216
  • Nemes, Gergő On the Borel summability of WKB solutions of certain Schrödinger-type differential equations, Journal of Approximation Theory, Volume 265 (2021), p. 105562 | DOI:10.1016/j.jat.2021.105562
  • Enomoto, Seishi; Matsuda, Tomohiro The exact WKB for cosmological particle production, Journal of High Energy Physics, Volume 2021 (2021) no. 3 | DOI:10.1007/jhep03(2021)090
  • Gaiotto, Davide; Lee, Ji Hoon; Wu, Jingxiang Integrable Kondo problems, Journal of High Energy Physics, Volume 2021 (2021) no. 4 | DOI:10.1007/jhep04(2021)268
  • Emery, Yoan TBA equations and quantization conditions, Journal of High Energy Physics, Volume 2021 (2021) no. 7 | DOI:10.1007/jhep07(2021)171
  • Schepers, Lucas; Thompson, Daniel C. Resurgence in the bi-Yang-Baxter model, Nuclear Physics B, Volume 964 (2021), p. 115308 | DOI:10.1016/j.nuclphysb.2021.115308
  • Taya, Hidetoshi; Hongo, Masaru; Ikeda, Tatsuhiko N. Analytical WKB theory for high-harmonic generation and its application to massive Dirac electrons, Physical Review B, Volume 104 (2021) no. 14 | DOI:10.1103/physrevb.104.l140305
  • Nikolaev, Nikita Abelianisation of logarithmic sl2-connections, Selecta Mathematica, Volume 27 (2021) no. 5 | DOI:10.1007/s00029-021-00688-5
  • Iwaki, Kohei 2-Parameter τ-Function for the First Painlevé Equation: Topological Recursion and Direct Monodromy Problem via Exact WKB Analysis, Communications in Mathematical Physics, Volume 377 (2020) no. 2, p. 1047 | DOI:10.1007/s00220-020-03769-2
  • Hollands, Lotte; Neitzke, Andrew Exact WKB and Abelianization for the T3 Equation, Communications in Mathematical Physics, Volume 380 (2020) no. 1, p. 131 | DOI:10.1007/s00220-020-03875-1
  • Sueishi, Naohisa; Kamata, Syo; Misumi, Tatsuhiro; Ünsal, Mithat On exact-WKB analysis, resurgent structure, and quantization conditions, Journal of High Energy Physics, Volume 2020 (2020) no. 12 | DOI:10.1007/jhep12(2020)114
  • Fauvet, Frédéric; Menous, Frédéric; Quéva, Julien Resurgence and holonomy of the ϕ2k model in zero dimension, Journal of Mathematical Physics, Volume 61 (2020) no. 9 | DOI:10.1063/5.0009292
  • Ito, Katsushi; Shu, Hongfei TBA equations for the Schrödinger equation with a regular singularity, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 33, p. 335201 | DOI:10.1088/1751-8121/ab96ee
  • Shimada, Naoaki; Shudo, Akira Numerical verification of the exact WKB formula for the generalized Landau-Zener-Stueckelberg problem, Physical Review A, Volume 102 (2020) no. 2 | DOI:10.1103/physreva.102.022213
  • Imaizumi, Keita Exact WKB analysis and TBA equations for the Mathieu equation, Physics Letters B, Volume 806 (2020), p. 135500 | DOI:10.1016/j.physletb.2020.135500
  • Allegretti, Dylan; Bridgeland, Tom The monodromy of meromorphic projective structures, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, p. 6321 | DOI:10.1090/tran/8093
  • Aoki, Takashi; Iwaki, Kohei; Takahashi, Toshinori Exact WKB Analysis of Schrödinger Equations with a Stokes Curve of Loop Type, Funkcialaj Ekvacioj, Volume 62 (2019) no. 1, p. 1 | DOI:10.1619/fesi.62.1
  • Ito, Katsushi; Mariño, Marcos; Shu, Hongfei TBA equations and resurgent Quantum Mechanics, Journal of High Energy Physics, Volume 2019 (2019) no. 1 | DOI:10.1007/jhep01(2019)228
  • Fujimori, Toshiaki; Kamata, Syo; Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke Bion non-perturbative contributions versus infrared renormalons in two-dimensional ℂPN − 1 models, Journal of High Energy Physics, Volume 2019 (2019) no. 2 | DOI:10.1007/jhep02(2019)190
  • Iwaki, Kohei; Koike, Tatsuya; Takei, Yumiko Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations, Journal of Integrable Systems, Volume 4 (2019) no. 1 | DOI:10.1093/integr/xyz004
  • Allegretti, Dylan G. L. Voros symbols as cluster coordinates, Journal of Topology, Volume 12 (2019) no. 4, p. 1031 | DOI:10.1112/topo.12106
  • Li, Yong; Sauzin, David; Sun, Shanzhong The Baker–Campbell–Hausdorff formula via mould calculus, Letters in Mathematical Physics, Volume 109 (2019) no. 3, p. 725 | DOI:10.1007/s11005-018-1125-5
  • Aniceto, Inês; Başar, Gökçe; Schiappa, Ricardo A primer on resurgent transseries and their asymptotics, Physics Reports, Volume 809 (2019), p. 1 | DOI:10.1016/j.physrep.2019.02.003
  • Takei, Yoshitsugu WKB Analysis and Stokes Geometry of Differential Equations, Analytic, Algebraic and Geometric Aspects of Differential Equations (2017), p. 263 | DOI:10.1007/978-3-319-52842-7_5
  • Gu, Jie; Sulejmanpasic, Tin High order perturbation theory for difference equations and Borel summability of quantum mirror curves, Journal of High Energy Physics, Volume 2017 (2017) no. 12 | DOI:10.1007/jhep12(2017)014
  • Gabella, Maxime; Longhi, Pietro; Park, Chan Y.; Yamazaki, Masahito BPS graphs: from spectral networks to BPS quivers, Journal of High Energy Physics, Volume 2017 (2017) no. 7 | DOI:10.1007/jhep07(2017)032
  • Fujimori, Toshiaki; Kamata, Syo; Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke Resurgence structure to all orders of multi-bions in deformed SUSY quantum mechanics, Progress of Theoretical and Experimental Physics, Volume 2017 (2017) no. 8 | DOI:10.1093/ptep/ptx101
  • Iwaki, Kohei; Nakanishi, Tomoki Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras, International Mathematics Research Notices, Volume 2016 (2016) no. 14, p. 4375 | DOI:10.1093/imrn/rnv270
  • Ashok, Sujay K.; Jatkar, Dileep P.; John, Renjan R.; Raman, M.; Troost, Jan Exact WKB analysis of N N = 2 gauge theories, Journal of High Energy Physics, Volume 2016 (2016) no. 7 | DOI:10.1007/jhep07(2016)115
  • AOKI, Takashi; TANDA, Mika Parametric Stokes phenomena of the Gauss hypergeometric differential equation with a large parameter, Journal of the Mathematical Society of Japan, Volume 68 (2016) no. 3 | DOI:10.2969/jmsj/06831099
  • Katzarkov, Ludmil; Noll, Alexander; Pandit, Pranav; Simpson, Carlos Harmonic Maps to Buildings and Singular Perturbation Theory, Communications in Mathematical Physics, Volume 336 (2015) no. 2, p. 853 | DOI:10.1007/s00220-014-2276-6
  • Kashani-Poor, Amir-Kian; Troost, Jan Pure N = 2 N=2 super Yang-Mills and exact WKB, Journal of High Energy Physics, Volume 2015 (2015) no. 8 | DOI:10.1007/jhep08(2015)160
  • Iwaki, Kohei Parametric Stokes Phenomenon for the Second Painlevé Equation, Funkcialaj Ekvacioj, Volume 57 (2014) no. 2, p. 173 | DOI:10.1619/fesi.57.173
  • Freericks, J. K.; Nikolić, B. K.; Frieder, O. The nonequilibrium quantum many-body problem as a paradigm for extreme data science, International Journal of Modern Physics B, Volume 28 (2014) no. 31, p. 1430021 | DOI:10.1142/s0217979214300217
  • Iwaki, Kohei; Nakanishi, Tomoki Exact WKB analysis and cluster algebras, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 47, p. 474009 | DOI:10.1088/1751-8113/47/47/474009
  • Getmanenko, Alexander Shatalov‐Sternin's construction of complex WKB solutions and the choice of integration paths, Mathematische Nachrichten, Volume 287 (2014) no. 14-15, p. 1642 | DOI:10.1002/mana.201100312
  • Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew Spectral Networks, Annales Henri Poincaré, Volume 14 (2013) no. 7, p. 1643 | DOI:10.1007/s00023-013-0239-7
  • Malek, Stéphane; Dwilewicz, Roman On the Parametric Stokes Phenomenon for Solutions of Singularly Perturbed Linear Partial Differential Equations, Abstract and Applied Analysis, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/930385
  • Fruchard, Augustin; Schäfke, Reinhard On the parametric resurgence for a certain singularly perturbed linear differential equation of second order, Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation vol. II (2011), p. 213 | DOI:10.1007/978-88-7642-377-2_3
  • Getmanenko, Alexander Resurgent Analysis of the Witten Laplacian in One Dimension, Funkcialaj Ekvacioj, Volume 54 (2011) no. 3, p. 383 | DOI:10.1619/fesi.54.383
  • Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya; Takei, Yoshitsugu On the WKB-theoretic structure of a Schrödinger operator with a merging pair of a simple pole and a simple turning point, Kyoto Journal of Mathematics, Volume 50 (2010) no. 1 | DOI:10.1215/0023608x-2009-007
  • Eremenko, Alexandre; Gabrielov, Andrei Analytic Continuation of Eigenvalues of a Quartic Oscillator, Communications in Mathematical Physics, Volume 287 (2009) no. 2, p. 431 | DOI:10.1007/s00220-008-0663-6
  • Delabaere, Eric Exact WKB analysis near a simple turning point, Algebraic Analysis of Differential Equations (2008), p. 101 | DOI:10.1007/978-4-431-73240-2_11
  • Takei, Yoshitsugu The work of T. Kawai on exact WKB analysis, Algebraic Analysis of Differential Equations (2008), p. 19 | DOI:10.1007/978-4-431-73240-2_4
  • Voros, André From exact-WKB toward singular quantum perturbation theory II, Algebraic Analysis of Differential Equations (2008), p. 321 | DOI:10.1007/978-4-431-73240-2_26
  • Rasoamanana, Jean-Marc Quantum resurgence for a class of Airy type differential equations, Journal of Differential Equations, Volume 244 (2008) no. 5, p. 1011 | DOI:10.1016/j.jde.2007.12.003
  • Shudo, Akira; Ikeda, Kensuke S Stokes geometry for the quantum Hénon map, Nonlinearity, Volume 21 (2008) no. 8, p. 1831 | DOI:10.1088/0951-7715/21/8/007
  • Kawai, Takahiro; Takei, Yoshitsugu WKB analysis of higher order Painlevé equations with a large parameter—Local reduction of 0-parameter solutions for Painlevé hierarchies (PJ)(J=I,II-1 or II-2), Advances in Mathematics, Volume 203 (2006) no. 2, p. 636 | DOI:10.1016/j.aim.2005.05.006
  • Duc Tai, Trinh On the simpleness of zeros of Stokes multipliers, Journal of Differential Equations, Volume 223 (2006) no. 2, p. 351 | DOI:10.1016/j.jde.2005.07.020
  • Delabaere, Eric; Rasoamanana, Jean-Marc Resurgent deformations for an ordinary differential equation of order 2, Pacific Journal of Mathematics, Volume 223 (2006) no. 1, p. 35 | DOI:10.2140/pjm.2006.223.35
  • Aoki, Takashi; Kawai, Takahiro; Koike, Tatsuya; Takei, Yoshitsugu On the exact WKB analysis of operators admitting infinitely many phases, Advances in Mathematics, Volume 181 (2004) no. 1, p. 165 | DOI:10.1016/s0001-8708(03)00049-5
  • Simpson, Carlos The Construction Problem in Kähler Geometry, Different Faces of Geometry, Volume 3 (2004), p. 365 | DOI:10.1007/0-306-48658-x_9
  • Colin De Verdière, Yves Singular Lagrangian manifolds and semiclassical analysis, Duke Mathematical Journal, Volume 116 (2003) no. 2 | DOI:10.1215/s0012-7094-03-11623-3
  • Aoki, Takashi; Kawai, Takahiro; Takei, Yoshitsugu Exact WKB analysis of non-adiabatic transition probabilities for three levels, Journal of Physics A: Mathematical and General, Volume 35 (2002) no. 10, p. 2401 | DOI:10.1088/0305-4470/35/10/306
  • Aoki, Takashi; Kawai, Takahiro; Takei, Yoshitsugu On the exact steepest descent method: A new method for the description of Stokes curves, Journal of Mathematical Physics, Volume 42 (2001) no. 8, p. 3691 | DOI:10.1063/1.1368138
  • Álvarez, Gabriel; Casares, Carmen Uniform asymptotic and JWKB expansions for anharmonic oscillators, Journal of Physics A: Mathematical and General, Volume 33 (2000) no. 13, p. 2499 | DOI:10.1088/0305-4470/33/13/304
  • Delabaere, Eric; Trinh, Duc Tai Spectral analysis of the complex cubic oscillator, Journal of Physics A: Mathematical and General, Volume 33 (2000) no. 48, p. 8771 | DOI:10.1088/0305-4470/33/48/314
  • Delabaere, Eric; Pham, Frédéric Unfolding the Quartic Oscillator, Annals of Physics, Volume 261 (1997) no. 2, p. 180 | DOI:10.1006/aphy.1997.5737
  • Voros, André Exact Anharmonic Quantization Condition (In One Dimension), Quasiclassical Methods, Volume 95 (1997), p. 189 | DOI:10.1007/978-1-4612-1940-8_10
  • Стернин, Борис Юрьевич; Sternin, Boris Yur'evich; Шаталов, Виктор Евгеньевич; Shatalov, Viktor Evgen'evich Стороннее дифференциальное исчисление и ресургентные уравнения, Известия Российской академии наук. Серия математическая, Volume 61 (1997) no. 4, p. 167 | DOI:10.4213/im141
  • Pham, Frédéric Quantum green's function and complex classical trajectories, Journal of Mathematical Sciences, Volume 82 (1996) no. 5, p. 3696 | DOI:10.1007/bf02362576
  • Ramis, Jean-Pierre; Schäfke, Reinhard Gevrey separation of fast and slow variables, Nonlinearity, Volume 9 (1996) no. 2, p. 353 | DOI:10.1088/0951-7715/9/2/004
  • Voros, A Exact quantization condition for anharmonic oscillators (in one dimension), Journal of Physics A: Mathematical and General, Volume 27 (1994) no. 13, p. 4653 | DOI:10.1088/0305-4470/27/13/038

Cité par 91 documents. Sources : Crossref