Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros
The aim of this article is to formulate in a geometrical way the master idea of Voros
@article{AIF_1993__43_1_163_0, author = {Dillinger, H. and Delabaere, E. and Pham, Fr\'ed\'eric}, title = {R\'esurgence de {Voros} et p\'eriodes des courbes hyperelliptiques}, journal = {Annales de l'Institut Fourier}, pages = {163--199}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {1}, year = {1993}, doi = {10.5802/aif.1326}, zbl = {0766.34032}, mrnumber = {1209700}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.1326/} }
TY - JOUR AU - Dillinger, H. AU - Delabaere, E. AU - Pham, Frédéric TI - Résurgence de Voros et périodes des courbes hyperelliptiques JO - Annales de l'Institut Fourier PY - 1993 SP - 163 EP - 199 VL - 43 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1326/ DO - 10.5802/aif.1326 LA - fr ID - AIF_1993__43_1_163_0 ER -
%0 Journal Article %A Dillinger, H. %A Delabaere, E. %A Pham, Frédéric %T Résurgence de Voros et périodes des courbes hyperelliptiques %J Annales de l'Institut Fourier %D 1993 %P 163-199 %V 43 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1326/ %R 10.5802/aif.1326 %G fr %F AIF_1993__43_1_163_0
Dillinger, H.; Delabaere, E.; Pham, Frédéric. Résurgence de Voros et périodes des courbes hyperelliptiques. Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 163-199. doi : 10.5802/aif.1326. https://www.numdam.org/articles/10.5802/aif.1326/
[AVG] Singularités des applications différentiables, t.2, Éd. MIR Moscou (traduction française), 1986.
, , ,[BB] Solution of the Schrödinger equation in terms of classical paths, Ann. Phys., 85 (1974), 514-545. | MR | Zbl
, ,[BO] Advanced Mathematical Methods for Scientists and Engineers, Mc Graw-Hill Book Inc. Company, 1978. | Zbl
, ,[CNP] Approche de la résurgence (Actualités Mathématiques, Hermann, à paraître).
, , ,[CNP0] Premiers pas en calcul étranger, Ann. Inst. Fourier, 43, 1 (1993). | Numdam | MR | Zbl
, , ,[D] Asymptotic Expansions : Their Derivation and Interpretation, Academic Press, London and New-York, 1973. | MR | Zbl
,[DDP] Exact semi-classical expansions for a one dimensional oscillator (en préparation) ; voir aussi E. Delabaere et H. Dillinger, Thèse de Doctorat, Université de Nice-Sophia-Antipolis, 1991.
, , ,[DDP0] Développements semi-classiques exacts des niveaux d'énergie d'un oscillateur à une dimension, C.R. Acad. Sci. Paris, t. 310, Série I, (1990), 141-146. | MR | Zbl
, , ,[E] Singularités irrégulières et résurgence multiple, dans cinq applications des fonctions résurgentes, preprint 84, t. 62, Orsay.
,[E0] Les fonctions résurgentes, Publ. Math. Université de Paris-Sud, en plusieurs tomes. | Zbl
,[Ji] Modèles de résurgence paramétrique, Fonctions d'Airy et cylindro-paraboliques, Thèse de Doctorat, 1990, Université de Nice-Sophia-Antipolis, à paraître dans J. Maths Pures Appl. | Zbl
,[L] Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III), Bull. Soc. Math. France, 87 (1959), 81-180. | Numdam | MR | Zbl
,[LL] Mécanique Quantique, Théorie non relativiste, Éd. MIR Moscou, 1966. | Zbl
, ,[P] Les méthodes nouvelles de la mécanique céleste, Librairie Albert Blanchard, 1987 (en plusieurs tomes).
,[V] The return of the quartic oscillator (the complex WKB method). Annales Institut H. Poincaré, 29, 3 (1983). | Numdam | Zbl
,- From Quantum Curves to Topological String Partition Functions II, Annales Henri Poincaré (2025) | DOI:10.1007/s00023-025-01538-2
- Resurgence and Mould Calculus, Encyclopedia of Mathematical Physics (2025), p. 24 | DOI:10.1016/b978-0-323-95703-8.00037-9
- TBA equations and quantum periods for D-type Argyres-Douglas theories, Journal of High Energy Physics, Volume 2025 (2025) no. 1 | DOI:10.1007/jhep01(2025)047
- Exact WKB Analysis and TBA Equations, ODE/IM Correspondence and Quantum Periods, Volume 51 (2025), p. 23 | DOI:10.1007/978-981-96-0499-9_2
- WKB Asymptotics of Stokes Matrices, Spectral Curves and Rhombus Inequalities, Communications in Mathematical Physics, Volume 405 (2024) no. 11 | DOI:10.1007/s00220-024-05133-0
- Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
- Sheaf quantization from exact WKB analysis, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0041
- TBA equations and exact WKB analysis in deformed supersymmetric quantum mechanics, Journal of High Energy Physics, Volume 2024 (2024) no. 3 | DOI:10.1007/jhep03(2024)122
- Relations between Stokes constants of unrefined and Nekrasov-Shatashvili topological strings, Journal of High Energy Physics, Volume 2024 (2024) no. 5 | DOI:10.1007/jhep05(2024)199
- Exact WKB analysis for adiabatic discrete-level Hamiltonians, Physical Review A, Volume 109 (2024) no. 2 | DOI:10.1103/physreva.109.022225
- Exact WKB Analysis and TBA Equations for the Stark Effect, Progress of Theoretical and Experimental Physics, Volume 2024 (2024) no. 1 | DOI:10.1093/ptep/ptad154
- Bright X/
-ray emission and lepton pair production by strong laser fields: a review, Reviews of Modern Plasma Physics, Volume 8 (2024) no. 1 | DOI:10.1007/s41614-024-00158-3 - Exact instanton transseries for quantum mechanics, SciPost Physics, Volume 16 (2024) no. 4 | DOI:10.21468/scipostphys.16.4.103
- Topological Recursion and Uncoupled BPS Structures II: Voros Symbols and the
-Function, Communications in Mathematical Physics, Volume 399 (2023) no. 1, p. 519 | DOI:10.1007/s00220-022-04563-y - Existence and Uniqueness of Exact WKB Solutions for Second-Order Singularly Perturbed Linear ODEs, Communications in Mathematical Physics, Volume 400 (2023) no. 1, p. 463 | DOI:10.1007/s00220-022-04603-7
- Nonperturbative particle production and differential geometry, International Journal of Modern Physics A, Volume 38 (2023) no. 28 | DOI:10.1142/s0217751x23501580
- On the Wall-Crossing Formula for Quadratic Differentials, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 8033 | DOI:10.1093/imrn/rnac071
- The Exact WKB analysis for asymmetric scalar preheating, Journal of High Energy Physics, Volume 2023 (2023) no. 1 | DOI:10.1007/jhep01(2023)088
- An anharmonic alliance: exact WKB meets EPT, Journal of High Energy Physics, Volume 2023 (2023) no. 11 | DOI:10.1007/jhep11(2023)124
- EXACT SOLUTIONS FOR THE SINGULARLY PERTURBED RICCATI EQUATION AND EXACT WKB ANALYSIS, Nagoya Mathematical Journal, Volume 250 (2023), p. 434 | DOI:10.1017/nmj.2022.38
- Advances in QED with intense background fields, Physics Reports, Volume 1010 (2023), p. 1 | DOI:10.1016/j.physrep.2023.01.003
- Degeneration structure of the Voros coefficients of the generalized hypergeometric differential equations with a large parameter, Recent Trends in Formal and Analytic Solutions of Diff. Equations, Volume 782 (2023), p. 43 | DOI:10.1090/conm/782/15721
- On the resurgent structure of quantum periods, SciPost Physics, Volume 15 (2023) no. 1 | DOI:10.21468/scipostphys.15.1.035
- Anisotropic Kondo line defect and ODE/IM correspondence, SciPost Physics, Volume 15 (2023) no. 6 | DOI:10.21468/scipostphys.15.6.248
- Generating Function of Monodromy Symplectomorphism for 2 × 2 Fuchsian Systems and Its WKB Expansion, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 19 (2023) no. 2, p. 301 | DOI:10.15407/mag19.02.301
- Kondo line defects and affine Gaudin models, Journal of High Energy Physics, Volume 2022 (2022) no. 1 | DOI:10.1007/jhep01(2022)175
- Exact WKB methods in SU(2) Nf = 1, Journal of High Energy Physics, Volume 2022 (2022) no. 1 | DOI:10.1007/jhep01(2022)046
- The Exact WKB analysis and the Stokes phenomena of the Unruh effect and Hawking radiation, Journal of High Energy Physics, Volume 2022 (2022) no. 12 | DOI:10.1007/jhep12(2022)037
- An analytic evaluation of gravitational particle production of fermions via Stokes phenomenon, Journal of High Energy Physics, Volume 2022 (2022) no. 9 | DOI:10.1007/jhep09(2022)216
- On the Borel summability of WKB solutions of certain Schrödinger-type differential equations, Journal of Approximation Theory, Volume 265 (2021), p. 105562 | DOI:10.1016/j.jat.2021.105562
- The exact WKB for cosmological particle production, Journal of High Energy Physics, Volume 2021 (2021) no. 3 | DOI:10.1007/jhep03(2021)090
- Integrable Kondo problems, Journal of High Energy Physics, Volume 2021 (2021) no. 4 | DOI:10.1007/jhep04(2021)268
- TBA equations and quantization conditions, Journal of High Energy Physics, Volume 2021 (2021) no. 7 | DOI:10.1007/jhep07(2021)171
- Resurgence in the bi-Yang-Baxter model, Nuclear Physics B, Volume 964 (2021), p. 115308 | DOI:10.1016/j.nuclphysb.2021.115308
- Analytical WKB theory for high-harmonic generation and its application to massive Dirac electrons, Physical Review B, Volume 104 (2021) no. 14 | DOI:10.1103/physrevb.104.l140305
- Abelianisation of logarithmic
-connections, Selecta Mathematica, Volume 27 (2021) no. 5 | DOI:10.1007/s00029-021-00688-5 - 2-Parameter
-Function for the First Painlevé Equation: Topological Recursion and Direct Monodromy Problem via Exact WKB Analysis, Communications in Mathematical Physics, Volume 377 (2020) no. 2, p. 1047 | DOI:10.1007/s00220-020-03769-2 - Exact WKB and Abelianization for the
Equation, Communications in Mathematical Physics, Volume 380 (2020) no. 1, p. 131 | DOI:10.1007/s00220-020-03875-1 - On exact-WKB analysis, resurgent structure, and quantization conditions, Journal of High Energy Physics, Volume 2020 (2020) no. 12 | DOI:10.1007/jhep12(2020)114
- Resurgence and holonomy of the ϕ2k model in zero dimension, Journal of Mathematical Physics, Volume 61 (2020) no. 9 | DOI:10.1063/5.0009292
- TBA equations for the Schrödinger equation with a regular singularity, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 33, p. 335201 | DOI:10.1088/1751-8121/ab96ee
- Numerical verification of the exact WKB formula for the generalized Landau-Zener-Stueckelberg problem, Physical Review A, Volume 102 (2020) no. 2 | DOI:10.1103/physreva.102.022213
- Exact WKB analysis and TBA equations for the Mathieu equation, Physics Letters B, Volume 806 (2020), p. 135500 | DOI:10.1016/j.physletb.2020.135500
- The monodromy of meromorphic projective structures, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, p. 6321 | DOI:10.1090/tran/8093
- Exact WKB Analysis of Schrödinger Equations with a Stokes Curve of Loop Type, Funkcialaj Ekvacioj, Volume 62 (2019) no. 1, p. 1 | DOI:10.1619/fesi.62.1
- TBA equations and resurgent Quantum Mechanics, Journal of High Energy Physics, Volume 2019 (2019) no. 1 | DOI:10.1007/jhep01(2019)228
- Bion non-perturbative contributions versus infrared renormalons in two-dimensional ℂPN − 1 models, Journal of High Energy Physics, Volume 2019 (2019) no. 2 | DOI:10.1007/jhep02(2019)190
- Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations, Journal of Integrable Systems, Volume 4 (2019) no. 1 | DOI:10.1093/integr/xyz004
- Voros symbols as cluster coordinates, Journal of Topology, Volume 12 (2019) no. 4, p. 1031 | DOI:10.1112/topo.12106
- The Baker–Campbell–Hausdorff formula via mould calculus, Letters in Mathematical Physics, Volume 109 (2019) no. 3, p. 725 | DOI:10.1007/s11005-018-1125-5
- A primer on resurgent transseries and their asymptotics, Physics Reports, Volume 809 (2019), p. 1 | DOI:10.1016/j.physrep.2019.02.003
- WKB Analysis and Stokes Geometry of Differential Equations, Analytic, Algebraic and Geometric Aspects of Differential Equations (2017), p. 263 | DOI:10.1007/978-3-319-52842-7_5
- High order perturbation theory for difference equations and Borel summability of quantum mirror curves, Journal of High Energy Physics, Volume 2017 (2017) no. 12 | DOI:10.1007/jhep12(2017)014
- BPS graphs: from spectral networks to BPS quivers, Journal of High Energy Physics, Volume 2017 (2017) no. 7 | DOI:10.1007/jhep07(2017)032
- Resurgence structure to all orders of multi-bions in deformed SUSY quantum mechanics, Progress of Theoretical and Experimental Physics, Volume 2017 (2017) no. 8 | DOI:10.1093/ptep/ptx101
- Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras, International Mathematics Research Notices, Volume 2016 (2016) no. 14, p. 4375 | DOI:10.1093/imrn/rnv270
- Exact WKB analysis of N
= 2 gauge theories, Journal of High Energy Physics, Volume 2016 (2016) no. 7 | DOI:10.1007/jhep07(2016)115 - Parametric Stokes phenomena of the Gauss hypergeometric differential equation with a large parameter, Journal of the Mathematical Society of Japan, Volume 68 (2016) no. 3 | DOI:10.2969/jmsj/06831099
- Harmonic Maps to Buildings and Singular Perturbation Theory, Communications in Mathematical Physics, Volume 336 (2015) no. 2, p. 853 | DOI:10.1007/s00220-014-2276-6
- Pure N = 2
super Yang-Mills and exact WKB, Journal of High Energy Physics, Volume 2015 (2015) no. 8 | DOI:10.1007/jhep08(2015)160 - Parametric Stokes Phenomenon for the Second Painlevé Equation, Funkcialaj Ekvacioj, Volume 57 (2014) no. 2, p. 173 | DOI:10.1619/fesi.57.173
- The nonequilibrium quantum many-body problem as a paradigm for extreme data science, International Journal of Modern Physics B, Volume 28 (2014) no. 31, p. 1430021 | DOI:10.1142/s0217979214300217
- Exact WKB analysis and cluster algebras, Journal of Physics A: Mathematical and Theoretical, Volume 47 (2014) no. 47, p. 474009 | DOI:10.1088/1751-8113/47/47/474009
- Shatalov‐Sternin's construction of complex WKB solutions and the choice of integration paths, Mathematische Nachrichten, Volume 287 (2014) no. 14-15, p. 1642 | DOI:10.1002/mana.201100312
- Spectral Networks, Annales Henri Poincaré, Volume 14 (2013) no. 7, p. 1643 | DOI:10.1007/s00023-013-0239-7
- On the Parametric Stokes Phenomenon for Solutions of Singularly Perturbed Linear Partial Differential Equations, Abstract and Applied Analysis, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/930385
- On the parametric resurgence for a certain singularly perturbed linear differential equation of second order, Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation vol. II (2011), p. 213 | DOI:10.1007/978-88-7642-377-2_3
- Resurgent Analysis of the Witten Laplacian in One Dimension, Funkcialaj Ekvacioj, Volume 54 (2011) no. 3, p. 383 | DOI:10.1619/fesi.54.383
- On the WKB-theoretic structure of a Schrödinger operator with a merging pair of a simple pole and a simple turning point, Kyoto Journal of Mathematics, Volume 50 (2010) no. 1 | DOI:10.1215/0023608x-2009-007
- Analytic Continuation of Eigenvalues of a Quartic Oscillator, Communications in Mathematical Physics, Volume 287 (2009) no. 2, p. 431 | DOI:10.1007/s00220-008-0663-6
- Exact WKB analysis near a simple turning point, Algebraic Analysis of Differential Equations (2008), p. 101 | DOI:10.1007/978-4-431-73240-2_11
- The work of T. Kawai on exact WKB analysis, Algebraic Analysis of Differential Equations (2008), p. 19 | DOI:10.1007/978-4-431-73240-2_4
- From exact-WKB toward singular quantum perturbation theory II, Algebraic Analysis of Differential Equations (2008), p. 321 | DOI:10.1007/978-4-431-73240-2_26
- Quantum resurgence for a class of Airy type differential equations, Journal of Differential Equations, Volume 244 (2008) no. 5, p. 1011 | DOI:10.1016/j.jde.2007.12.003
- Stokes geometry for the quantum Hénon map, Nonlinearity, Volume 21 (2008) no. 8, p. 1831 | DOI:10.1088/0951-7715/21/8/007
- WKB analysis of higher order Painlevé equations with a large parameter—Local reduction of 0-parameter solutions for Painlevé hierarchies (PJ)(J=I,II-1 or II-2), Advances in Mathematics, Volume 203 (2006) no. 2, p. 636 | DOI:10.1016/j.aim.2005.05.006
- On the simpleness of zeros of Stokes multipliers, Journal of Differential Equations, Volume 223 (2006) no. 2, p. 351 | DOI:10.1016/j.jde.2005.07.020
- Resurgent deformations for an ordinary differential equation of order 2, Pacific Journal of Mathematics, Volume 223 (2006) no. 1, p. 35 | DOI:10.2140/pjm.2006.223.35
- On the exact WKB analysis of operators admitting infinitely many phases, Advances in Mathematics, Volume 181 (2004) no. 1, p. 165 | DOI:10.1016/s0001-8708(03)00049-5
- The Construction Problem in Kähler Geometry, Different Faces of Geometry, Volume 3 (2004), p. 365 | DOI:10.1007/0-306-48658-x_9
- Singular Lagrangian manifolds and semiclassical analysis, Duke Mathematical Journal, Volume 116 (2003) no. 2 | DOI:10.1215/s0012-7094-03-11623-3
- Exact WKB analysis of non-adiabatic transition probabilities for three levels, Journal of Physics A: Mathematical and General, Volume 35 (2002) no. 10, p. 2401 | DOI:10.1088/0305-4470/35/10/306
- On the exact steepest descent method: A new method for the description of Stokes curves, Journal of Mathematical Physics, Volume 42 (2001) no. 8, p. 3691 | DOI:10.1063/1.1368138
- Uniform asymptotic and JWKB expansions for anharmonic oscillators, Journal of Physics A: Mathematical and General, Volume 33 (2000) no. 13, p. 2499 | DOI:10.1088/0305-4470/33/13/304
- Spectral analysis of the complex cubic oscillator, Journal of Physics A: Mathematical and General, Volume 33 (2000) no. 48, p. 8771 | DOI:10.1088/0305-4470/33/48/314
- Unfolding the Quartic Oscillator, Annals of Physics, Volume 261 (1997) no. 2, p. 180 | DOI:10.1006/aphy.1997.5737
- Exact Anharmonic Quantization Condition (In One Dimension), Quasiclassical Methods, Volume 95 (1997), p. 189 | DOI:10.1007/978-1-4612-1940-8_10
- Стороннее дифференциальное исчисление и ресургентные уравнения, Известия Российской академии наук. Серия математическая, Volume 61 (1997) no. 4, p. 167 | DOI:10.4213/im141
- Quantum green's function and complex classical trajectories, Journal of Mathematical Sciences, Volume 82 (1996) no. 5, p. 3696 | DOI:10.1007/bf02362576
- Gevrey separation of fast and slow variables, Nonlinearity, Volume 9 (1996) no. 2, p. 353 | DOI:10.1088/0951-7715/9/2/004
- Exact quantization condition for anharmonic oscillators (in one dimension), Journal of Physics A: Mathematical and General, Volume 27 (1994) no. 13, p. 4653 | DOI:10.1088/0305-4470/27/13/038
Cité par 91 documents. Sources : Crossref