On considère des opérateurs autoadjoints et positifs de la forme
We consider selfadjoint positively definite operators of the form
@article{AIF_1992__42_3_625_0, author = {Vodev, Georgi}, title = {On the distribution of scattering poles for perturbations of the {Laplacian}}, journal = {Annales de l'Institut Fourier}, pages = {625--635}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {3}, year = {1992}, doi = {10.5802/aif.1303}, mrnumber = {93i:35098}, zbl = {0738.35054}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1303/} }
TY - JOUR AU - Vodev, Georgi TI - On the distribution of scattering poles for perturbations of the Laplacian JO - Annales de l'Institut Fourier PY - 1992 SP - 625 EP - 635 VL - 42 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1303/ DO - 10.5802/aif.1303 LA - en ID - AIF_1992__42_3_625_0 ER -
%0 Journal Article %A Vodev, Georgi %T On the distribution of scattering poles for perturbations of the Laplacian %J Annales de l'Institut Fourier %D 1992 %P 625-635 %V 42 %N 3 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1303/ %R 10.5802/aif.1303 %G en %F AIF_1992__42_3_625_0
Vodev, Georgi. On the distribution of scattering poles for perturbations of the Laplacian. Annales de l'Institut Fourier, Tome 42 (1992) no. 3, pp. 625-635. doi : 10.5802/aif.1303. https://www.numdam.org/articles/10.5802/aif.1303/
[1] La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Commun. Partial Differ. Equations, 7 (1982), 905-958. | Zbl
, , ,[2] A polynomial bound on the number of scattering poles for a potential in even dimensional space Rn, Commun. Partial Differ. Equations, 11 (1986), 367-396. | MR | Zbl
,[3] Scattering Theory, Academic Press, 1967. | Zbl
, ,[4] Polynomial bounds on the number of scattering poles, J. Func. Anal., 53 (1983), 287-303. | MR | Zbl
,[5] Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles", Saint-Jean-de-Monts (1984). | Numdam | Zbl
,[6] Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Differ. Equations, 13 (1988), 1431-1439. | MR | Zbl
,[7] Geometric bounds on the number of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1-57. | Zbl
,[8] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., (1991), 729-769. | MR | Zbl
, ,[9] The Theory of Functions, Oxford University Press, 1968.
,[10] Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ., 1988. | Zbl
,[11] Polynomial bounds on the number of scattering poles for symmetric systems, Ann. Inst. Henri Poincaré (Physique théorique), 54 (1991), 199-208. | Numdam | MR | Zbl
,[12] Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, n ≥ 3, odd, Osaka J. Math., 28 (1991), 441-449. | MR | Zbl
,[13] Sharp polynomial bounds on the number of scattering poles for metric perturbation of the Laplacian in Rn, Math. Ann., 291 (1991), 39-49. | MR | Zbl
,[14] Sharp bounds on the number of scattering poles for perturbations of the Lapacian, Commun. Math. Phys., 145 (1992), to appear. | MR | Zbl
,[15] Distribution of poles for scattering in the real line, J. Func. Anal., 73 (1987), 227-296. | MR | Zbl
,[16] Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Func. Anal., 82 (1989), 370-403. | MR | Zbl
,[17] Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59 (1989), 311-323. | MR | Zbl
,Cité par Sources :