@article{AIHPA_1991__54_2_199_0, author = {Vodev, G.}, title = {Polynomial bounds on the number of scattering poles for symmetric systems}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {199--208}, publisher = {Gauthier-Villars}, volume = {54}, number = {2}, year = {1991}, mrnumber = {1110652}, zbl = {0816.35101}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1991__54_2_199_0/} }
TY - JOUR AU - Vodev, G. TI - Polynomial bounds on the number of scattering poles for symmetric systems JO - Annales de l'I.H.P. Physique théorique PY - 1991 SP - 199 EP - 208 VL - 54 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1991__54_2_199_0/ LA - en ID - AIHPA_1991__54_2_199_0 ER -
Vodev, G. Polynomial bounds on the number of scattering poles for symmetric systems. Annales de l'I.H.P. Physique théorique, Tome 54 (1991) no. 2, pp. 199-208. http://www.numdam.org/item/AIHPA_1991__54_2_199_0/
[1] La relation de Poisson pour l'équation des ondes dans un ouvert non borné application à la théorie de la diffusion, Comm. Partial Diff. Eq., T. 7, 1982, pp. 905-958. | MR | Zbl
, and ,[2] The Analysis of Linear Partial Differential Operators I, Springer Verlag, Berlin, 1983. | Zbl
,[3] A Polynomial Bound on the Number of Scattering Poles for a Potential in Even Dimensional Space Rn, Comm. Partial Diff. Eq., T. 11, 1986, pp. 367-396. | MR | Zbl
,[4] On the Value Distribution of the Scattering Poles Associated to the Schrödinger Operator H = (- iV+b(x))2+α(x) in Rn, n≧3, preprint.
,[5] Scattering Theory, Academic Press, 1967. | MR | Zbl
and ,[6] Polynomial Bounds on the Number of Scattering Poles, J. Funct. Anal., T. 53, 1983, pp. 287-303. | MR | Zbl
,[7] Polynomial Bounds on the Distribution of Poles in Scattering by an Obstacle, Journées « Equations aux Dérivées Partielles », Saint-Jean-de-Monts, 1984. | Numdam | Zbl
,[8] Weyl Asymptotics for the Phase in Obstacle Scattering, Comm. Partial Diff. Eq., T. 13, 1988, pp. 1431-1439. | MR | Zbl
,[9] The Theory of Functions, Oxford University Press, 1968.
,[10] Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, n≧3, Odd, Osaka J. Math. (to appear). | MR | Zbl
,[11] Sharp Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, preprint.
,[12] Distribution of Poles for Scattering on the Real Line, J. Funct. Anal., T. 73, 1987, pp. 277-296. | MR | Zbl
,[13] Sharp Polynomial Bounds on the Number of Scattering Poles of Radial Potentials, J. Funct. Anal., T. 82, 1989, pp. 370-403. | MR | Zbl
,[14] Sharp Polynomial Bounds on the Number of Scattering Poles, Duke Math. J., T. 59, 1989, pp. 311-323. | MR | Zbl
,