Plurisubharmonic functions with logarithmic singularities
Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 133-171.

On associe à une fonction u, plurisousharmonique dans Cn de croissance logarithmique à l’infini, la fonction de Robin

ρu(z)=lim supλu(λz)-log(λz)

dans l’hyperplan Pn-1 à l’infini. On étudie L+, la classe des fonctions de la forme u=log(1+|z|)+O(1) et Lp, la classe des fonctions pour lesquelles la fonction ρu n’est pas identiquement -. On obtient une formule intégrale qui relie la mesure de Monge-Ampère sur l’espace Cn et la fonction de Robin. Sous titre d’application, on donne un critère sur les mesures de Monge-Ampère d’une suite de fonctions {uj}L+ qui est nécessaire et suffisante pour la convergence des fonctions de Robin {ru}. Par conséquent, on trouve qu’un ensemble polaire E est contenu dans {Ψ=-} pour une fonction uLρ, donc que l’ensemble de propagation E*, l’intersection des ensembles {Ψ=-} contenant E, est polaire. Soit A une hypersurface algébrique, EA=, alors E* ne contient pas A.

To a plurisubharmonic function u on Cn with logarithmic growth at infinity, we may associate the Robin function

ρu(z)=lim supλu(λz)-log(λz)

defined on Pn-1, the hyperplane at infinity. We study the classes L+, and (respectively) Lp of plurisubharmonic functions which have the form u=log(1+|z|)+O(1) and (respectively) for which the function ρu is not identically -. We obtain an integral formula which connects the Monge-Ampère measure on the space Cn with the Robin function on Pn-1. As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in L+ which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set E is contained in {Ψ=-} for some ΨLρ, and so the polar propagator E*, given as the intersection of the sets {Ψ=-} containing E, is polar. Ir A is an algebraic hypersurface which is disjoint from E, then E* cannot contain A.

@article{AIF_1988__38_4_133_0,
     author = {Bedford, E. and Taylor, B. A.},
     title = {Plurisubharmonic functions with logarithmic singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {133--171},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {4},
     year = {1988},
     doi = {10.5802/aif.1152},
     mrnumber = {90f:32016},
     zbl = {0626.32022},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1152/}
}
TY  - JOUR
AU  - Bedford, E.
AU  - Taylor, B. A.
TI  - Plurisubharmonic functions with logarithmic singularities
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 133
EP  - 171
VL  - 38
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1152/
DO  - 10.5802/aif.1152
LA  - en
ID  - AIF_1988__38_4_133_0
ER  - 
%0 Journal Article
%A Bedford, E.
%A Taylor, B. A.
%T Plurisubharmonic functions with logarithmic singularities
%J Annales de l'Institut Fourier
%D 1988
%P 133-171
%V 38
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1152/
%R 10.5802/aif.1152
%G en
%F AIF_1988__38_4_133_0
Bedford, E.; Taylor, B. A. Plurisubharmonic functions with logarithmic singularities. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 133-171. doi : 10.5802/aif.1152. https://www.numdam.org/articles/10.5802/aif.1152/

[AT] H. Alexander and B. A. Taylor, Comparison of two capacities in ℂn, Math. Z., 186 (1984), 407-417. | MR | Zbl

[BT 1] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-40. | MR | Zbl

[BT 2] E. Bedford and B. A. Taylor, Fine topology, Silov boundary, and (ddc)n, J. Funct. Anal., 72 (1987), 225-251. | MR | Zbl

[Car] L. Carleson, Selected Problems in Exceptional Sets, Van Nostrand Math. Studies # 13, D. Van Nostrand (1968). | Zbl

[Ceg] U. Cegrell, An estimate of the complex Monge-Ampere operator. Analytic functions. Proceedings, Blazejwko 1982. Lecture Notes in Math., 1039, pp. 84-87. Berlin, Heidelberg, New York, Springer, 1983. | Zbl

[D 1] J.-P. Demailly, Mesure de Monge-Ampère et caractérisation des variétés algébriques affines, mémoire (nouvelle série) n° 19, Soc. Math. de France, 1985. | Numdam | MR | Zbl

[D 2] J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z:, 194 (1987), 519-564. | MR | Zbl

[F] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR | Zbl

[J] B. Josefson, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on ℂn, Ark. Math., 16 (1978), 109-115. | MR | Zbl

[Km] M. Klimek, Extremal plurisubharmonic functions and invariant pseudo-distances, Bull. Soc. Math. France, 113 (1985), 123-142. | Numdam | MR | Zbl

[K 1] S. Kolodziej, Logarithmic capacity in ℂn, to appear in Ann. Pol. Math. | Zbl

[K 2] S. Kolodziej, On capacities associated to the Siciak extremal function (preprint). | Zbl

[Lp 1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Numdam | MR | Zbl

[Lp 2] L. Lempert, Solving the degenerate Monge-Ampere equation with one concentrated singularity, Math. Ann., 263 (1983), 515-532. | MR | Zbl

[L] N. Levenberg, Capacities in several complex variables, Dissertation, The University of Michigan, 1984.

[Sa] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys, 36 (1981), 61-119. | MR | Zbl

[Si 1] J. Siciak, Extremal plurisubharmonic functions in ℂn, Ann. Polon. Math., 39 (1981). | MR | Zbl

[Si 2] J. Siciak, Extremal plurisubharmonic functions and capacities in ℂn, Sophia University, Tokyo, 1982. | Zbl

[Si 3] J. Siciak, On logarithmic capacities and pluripolar sets in ℂn (preprint).

[So] S. Souhail, Relations entre différentes notions d'ensembles pluripolaires complets dans ℂn, Thèse, L'Université Paul Sabatier de Toulouse, 1987.

[T] B. A. Taylor, An estimate for an extremal plurisubharmonic function on ℂn, Séminaire P. Lelong, P. Dolbeault, H. Skoda, 1982-1983, Lectures Notes in Math., 1028 (1983), 318-328. | MR | Zbl

[Z] V. P. Zaharjuta, Transfinite diameter Čebyšev constants, and capacity for compacta in ℂn, Math. USSR Sbornik, 25 (1975), 350-364. | Zbl

[Ze] A. Zeriahi, Ensembles pluripolaires exceptionnels pour croissance partielle des fonctions holomorphes, preprint. | Zbl

  • Ma‘u, Sione Extremal functions for real convex bodies: simplices, strips, and ellipses, Mathematische Zeitschrift, Volume 300 (2022) no. 3, p. 3227 | DOI:10.1007/s00209-021-02891-8
  • Levenberg, N.; Ma’u, S. C-Robin functions and applications, Analysis Mathematica, Volume 46 (2020) no. 4, p. 781 | DOI:10.1007/s10476-020-0046-6
  • Chen, Juan; Ma, Daowei Pluripolar Hulls and Convergence Sets, Potential Analysis, Volume 52 (2020) no. 1, p. 1 | DOI:10.1007/s11118-018-9728-0
  • Bayraktar, T.; Bloom, T.; Levenberg, N. Pluripotential theory and convex bodies, Sbornik: Mathematics, Volume 209 (2018) no. 3, p. 352 | DOI:10.1070/sm8893
  • Bayraktar, Turgay; Bloom, Thomas; Levenberg, Norm Теория плюрипотенциала и выпуклые тела, Математический сборник, Volume 209 (2018) no. 3, p. 67 | DOI:10.4213/sm8893
  • Pierzchała, Rafał Semialgebraic sets and the Łojasiewicz-Siciak condition, Journal d'Analyse Mathématique, Volume 129 (2016) no. 1, p. 285 | DOI:10.1007/s11854-016-0022-z
  • Ma, Daowei; Neelon, Tejinder S. On convergence sets of formal power series, Complex Analysis and its Synergies, Volume 1 (2015) no. 1 | DOI:10.1186/s40627-015-0004-4
  • Phuong Chi, Kieu A theorem on the approximation of plurisubharmonic functions in Lelong classes, Indagationes Mathematicae, Volume 26 (2015) no. 2, p. 445 | DOI:10.1016/j.indag.2015.01.004
  • Zeriahi, Ahmed A viscosity approach to degenerate complex Monge-Ampère equations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 22 (2014) no. 4, p. 843 | DOI:10.5802/afst.1390
  • Dieu, Nguyen Quang; Bang, Pham Hien; Hong, Nguyen Xuan Uniqueness properties of m-subharmonic functions in Cegrell classes, Journal of Mathematical Analysis and Applications, Volume 420 (2014) no. 1, p. 669 | DOI:10.1016/j.jmaa.2014.06.008
  • Alan, Muhammed Ali Supports of Weighted Equilibrium Measures and Examples, Potential Analysis, Volume 38 (2013) no. 2, p. 457 | DOI:10.1007/s11118-012-9281-1
  • Drinovec Drnovšek, Barbara; Forstnerič, Franc Characterizations of projective hulls by analytic discs, Illinois Journal of Mathematics, Volume 56 (2012) no. 1 | DOI:10.1215/ijm/1380287459
  • Bloom, Thomas; Levenberg, Norman Pluripotential Energy, Potential Analysis, Volume 36 (2012) no. 1, p. 155 | DOI:10.1007/s11118-011-9224-2
  • El Kadiri, Mohamed; Fuglede, Bent; Wiegerinck, Jan Plurisubharmonic and holomorphic functions relative to the plurifine topology, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 2, p. 706 | DOI:10.1016/j.jmaa.2011.03.041
  • Dieu, Nguyen Quang; Hiep, Pham Hoang Pluripolar Hulls and Complete Pluripolar Sets, Potential Analysis, Volume 29 (2008) no. 4, p. 409 | DOI:10.1007/s11118-008-9103-7
  • Hiep, Pham On the convergence in capacity on compact Kahler manifolds and its applications, Proceedings of the American Mathematical Society, Volume 136 (2008) no. 6, p. 2007 | DOI:10.1090/s0002-9939-08-09043-6
  • Benelkourchi, Slimane; Jennane, Bensalem; Zeriahi, Ahmed Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Arkiv för Matematik, Volume 43 (2005) no. 1, p. 85 | DOI:10.1007/bf02383612
  • Kirsch, Siegfried Transfinite Diameter, Chebyshev Constant and Capacity, Geometric Function Theory, Volume 2 (2005), p. 243 | DOI:10.1016/s1874-5709(05)80010-1
  • Cegrell, U.; Kolodziej, S.; Zeriahi, A. Subextension of plurisubharmonic functions with weak singularities, Mathematische Zeitschrift, Volume 250 (2005) no. 1, p. 7 | DOI:10.1007/s00209-004-0714-4
  • Stawiska, Małgorzata Plurisubharmonic Lyapunov functions, Michigan Mathematical Journal, Volume 52 (2004) no. 1 | DOI:10.1307/mmj/1080837739
  • Rashkovskii, Alexander Total masses of mixed Monge-Ampère currents, Michigan Mathematical Journal, Volume 51 (2003) no. 1 | DOI:10.1307/mmj/1049832899
  • Zeriahi, Ahmed A criterion of algebraicity for Lelong classes and analytic sets, Acta Mathematica, Volume 184 (2000) no. 1, p. 113 | DOI:10.1007/bf02392783
  • Xing, Yang Complex Monge-Ampère Measures of Plurisubharmonic Functions with Bounded Values Near the Boundary, Canadian Journal of Mathematics, Volume 52 (2000) no. 5, p. 1085 | DOI:10.4153/cjm-2000-045-x
  • Bloom, Thomas; Calvi, Jean-Paul Sur le diamètre transfini en plusieurs variables, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 329 (1999) no. 7, p. 567 | DOI:10.1016/s0764-4442(00)80002-6
  • Bloom, Thomas Some Applications of the Robin Function to Multivariable Approximation Theory, Journal of Approximation Theory, Volume 92 (1998) no. 1, p. 1 | DOI:10.1006/jath.1997.3115
  • Meise, R.; Taylor, B. A.; Vogt, D. Extremal plurisubharmonic functions of linear growth on algebraic varieties, Mathematische Zeitschrift, Volume 219 (1995) no. 1, p. 515 | DOI:10.1007/bf02572379
  • Einstein-Matthews, Stanley M. Boundary behaviour of extremal plurisubharmonic functions, Nagoya Mathematical Journal, Volume 138 (1995), p. 65 | DOI:10.1017/s0027763000005195

Cité par 27 documents. Sources : Crossref