Soient
On rencontre ce problème dans l’étude des reconstructions des images à partir des projections (tomographie). C’est un problème essentiellement équivalent que de décider si un certain opérateur à valeurs matricielles a son image fermée. Si
For
This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If
@article{AIF_1984__34_1_207_0, author = {Boman, Jan}, title = {On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform}, journal = {Annales de l'Institut Fourier}, pages = {207--239}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {34}, number = {1}, year = {1984}, doi = {10.5802/aif.957}, mrnumber = {85j:44002}, zbl = {0521.46018}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.957/} }
TY - JOUR AU - Boman, Jan TI - On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform JO - Annales de l'Institut Fourier PY - 1984 SP - 207 EP - 239 VL - 34 IS - 1 PB - Imprimerie Louis-Jean PP - Gap UR - https://www.numdam.org/articles/10.5802/aif.957/ DO - 10.5802/aif.957 LA - en ID - AIF_1984__34_1_207_0 ER -
%0 Journal Article %A Boman, Jan %T On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform %J Annales de l'Institut Fourier %D 1984 %P 207-239 %V 34 %N 1 %I Imprimerie Louis-Jean %C Gap %U https://www.numdam.org/articles/10.5802/aif.957/ %R 10.5802/aif.957 %G en %F AIF_1984__34_1_207_0
Boman, Jan. On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform. Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 207-239. doi : 10.5802/aif.957. https://www.numdam.org/articles/10.5802/aif.957/
[1] La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier, 1 (1949), 61-101. | Numdam | MR | Zbl
, ,[2] Consistency conditions for a finite set of projections of a function, Math. Proc. Cambridge Philos. Soc., 85 (1979), 61-68. | MR | Zbl
,[3] The angles between the null spaces of X-rays, J Math. Anal. Appl., 62 (1978), 1-23. | MR | Zbl
, ,[4] Linear partial differential operators, Springer-Verlag, Berlin, 1963. | MR | Zbl
,[5] Linear topological spaces, Van Nostrand, 1963. | MR | Zbl
, ,[6] Optimal reconstruction of a function from its projections, Duke Math. J., 42 (1975), 645-659. 659. | MR | Zbl
, ,[7] Sums of plane waves and the range of the Radon transform, Math. Ann., 243 (1979), 153-161. | MR | Zbl
, , ,[8] Computerized tomography: the new medical X-ray technology, Amer. Math. Monthly, 85 (1978), 420-438. | Zbl
, ,[9] Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. A.M.S., 83 (1977), 1227-1270. | MR | Zbl
, , ,[10] When is the sum of closed subspaces closed? An example arising in computerized tomography, Research Report, Royal Inst. Technology (Stockholm), 1980.
,[11] Uniqueness, nonuniqueness and inversion in the X-ray and Radon problems, to appear in Proc. Internat. Symp. on III-posed Problems, Univ. of Delaware, Newark, Delaware, 1979.
, , ,Cité par Sources :