Pour un groupe abélien, localement compact
For a locally compact, abelian group
@article{AIF_1980__30_3_129_0, author = {Losert, Viktor}, title = {A characterization of the minimal strongly character invariant {Segal} algebra}, journal = {Annales de l'Institut Fourier}, pages = {129--139}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {3}, year = {1980}, doi = {10.5802/aif.795}, mrnumber = {82i:43004}, zbl = {0425.43003}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.795/} }
TY - JOUR AU - Losert, Viktor TI - A characterization of the minimal strongly character invariant Segal algebra JO - Annales de l'Institut Fourier PY - 1980 SP - 129 EP - 139 VL - 30 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.795/ DO - 10.5802/aif.795 LA - en ID - AIF_1980__30_3_129_0 ER -
%0 Journal Article %A Losert, Viktor %T A characterization of the minimal strongly character invariant Segal algebra %J Annales de l'Institut Fourier %D 1980 %P 129-139 %V 30 %N 3 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.795/ %R 10.5802/aif.795 %G en %F AIF_1980__30_3_129_0
Losert, Viktor. A characterization of the minimal strongly character invariant Segal algebra. Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 129-139. doi : 10.5802/aif.795. https://www.numdam.org/articles/10.5802/aif.795/
[1] Unions et intersections d'espaces L invariantes par translation ou convolution, Ann. Inst. Fourier, 28, Fasc. 2, (1978), 53-84. | EuDML | Numdam | MR | Zbl
, , ,[2] Transformation de Fourier sur les espaces lp (Lp′), Ann. Inst. Fourier, 29, Fasc. 1, (1979), 189-206. | EuDML | Numdam | MR | Zbl
, ,[3] Funktionen vom Verschiebungstyp und Segalalgebren, Dissertation, Wien 1979.
,[4] Functions of translation type and functorial properties of Segal algebras II, Preprint. | Zbl
,[5] A characterization of Wiener's algebra on locally compact groups, Arch. Math., 24 (1977), 136-140. | MR | Zbl
,[6] The minimal strongly character invariant Segal algebra I, II, Preprint.
,[7] Topological vector spaces, Gordon and Breach, New York-London-Paris, 1973. | MR | Zbl
,[8] Abstract harmonic analysis I, Grundl. d. math. Wiss., Springer-Verlag, Berlin-Heidelberg-New York, 1963. | MR | Zbl
, ,[9] Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., Ser II, 10 (1975), 295-305. | MR | Zbl
,[10] Séries de Fourier absolument convergentes, Ergebnisse d. Math., 50, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR | Zbl
,[11] Multipliers of Segal algebras, Math. Scand., 38 (1976), 285-303. | EuDML | MR | Zbl
,[12] On some group algebra modules related to Wiener's algebra M1, Pacific J. Math., 55 (1974), 507-520. | MR | Zbl
, , ,[13] Classical harmonic analysis and locally compact groups, Oxford at the Clarendon Press, 1968. | MR | Zbl
,[14] Un espace de Banach de distributions tempérées sur les groupes localement compacts abélien, C.R.A.S. Paris, t. 290, Série A (1980), 791-794. | MR | Zbl
,[15] Gewisse Segalsche Algebren auf lokal-kompakten Gruppen, Arch. Math., 33 (1979), 454-460. | MR | Zbl
,- Distribution Theory by Riemann Integrals, Mathematical Modelling, Optimization, Analytic and Numerical Solutions (2020), p. 33 | DOI:10.1007/978-981-15-0928-5_3
- Time-frequency analysis on the adeles over the rationals, Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, p. 188 | DOI:10.1016/j.crma.2018.12.004
- Sampling and periodization of generators of Heisenberg modules, International Journal of Mathematics, Volume 30 (2019) no. 10, p. 1950051 | DOI:10.1142/s0129167x19500514
- Kernel theorems in coorbit theory, Transactions of the American Mathematical Society, Series B, Volume 6 (2019) no. 11, p. 346 | DOI:10.1090/btran/42
- On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 6, p. 1579 | DOI:10.1007/s00041-018-9596-4
- On the Fourier transform on function algebras on locally compact Abelian groups, Monatshefte für Mathematik, Volume 184 (2017) no. 4, p. 597 | DOI:10.1007/s00605-017-1069-3
- Fourier multipliers of classical modulation spaces, Applied and Computational Harmonic Analysis, Volume 21 (2006) no. 3, p. 349 | DOI:10.1016/j.acha.2006.04.010
- The Segal Algebra
and Norm Summability of Fourier Series and Fourier Transforms, Monatshefte für Mathematik, Volume 148 (2006) no. 4, p. 333 | DOI:10.1007/s00605-005-0358-4 - Modulation Spaces: Looking Back and Ahead, Sampling Theory in Signal and Image Processing, Volume 5 (2006) no. 2, p. 109 | DOI:10.1007/bf03549447
- Theta functions and symplectic groups, Monatshefte f�r Mathematik, Volume 97 (1984) no. 3, p. 219 | DOI:10.1007/bf01299149
- Properties of the Fourier algebra that are equivalent to amenability, Proceedings of the American Mathematical Society, Volume 92 (1984) no. 3, p. 347 | DOI:10.1090/s0002-9939-1984-0759651-8
- Constructions of the maximal strongly character invariant segal algebras and their applications, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 35 (1983) no. 1, p. 123 | DOI:10.1017/s1446788700024800
- Segal algebras with functorial properties, Monatshefte für Mathematik, Volume 96 (1983) no. 3, p. 209 | DOI:10.1007/bf01605489
- Functions of translation type and functorial properties of Segal algebras II, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 253 | DOI:10.1007/bf01320057
- On a new Segal algebra, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 269 | DOI:10.1007/bf01320058
Cité par 15 documents. Sources : Crossref