A characterization of the minimal strongly character invariant Segal algebra
Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 129-139.

Pour un groupe abélien, localement compact G, on étudie l’espace S0(G), qui est formé de fonctions appartenant localement à l’algèbre de Fourier et se comportant à l’infini comme des éléments de l1. On donne une caractérisation abstraite de la famille des espaces {S0(G):G abélien} par ses propriétés héréditaires.

For a locally compact, abelian group G, we study the space S0(G) of functions on G belonging locally to the Fourier algebra and with l1-behavior at infinity. We give an abstract characterization of the family of spaces {S0(G):G abelian} by its hereditary properties.

@article{AIF_1980__30_3_129_0,
     author = {Losert, Viktor},
     title = {A characterization of the minimal strongly character invariant {Segal} algebra},
     journal = {Annales de l'Institut Fourier},
     pages = {129--139},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     number = {3},
     year = {1980},
     doi = {10.5802/aif.795},
     mrnumber = {82i:43004},
     zbl = {0425.43003},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.795/}
}
TY  - JOUR
AU  - Losert, Viktor
TI  - A characterization of the minimal strongly character invariant Segal algebra
JO  - Annales de l'Institut Fourier
PY  - 1980
SP  - 129
EP  - 139
VL  - 30
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.795/
DO  - 10.5802/aif.795
LA  - en
ID  - AIF_1980__30_3_129_0
ER  - 
%0 Journal Article
%A Losert, Viktor
%T A characterization of the minimal strongly character invariant Segal algebra
%J Annales de l'Institut Fourier
%D 1980
%P 129-139
%V 30
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.795/
%R 10.5802/aif.795
%G en
%F AIF_1980__30_3_129_0
Losert, Viktor. A characterization of the minimal strongly character invariant Segal algebra. Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 129-139. doi : 10.5802/aif.795. https://www.numdam.org/articles/10.5802/aif.795/

[1] J.P. Bertrandias, C. Datry, C. Dupuis, Unions et intersections d'espaces L invariantes par translation ou convolution, Ann. Inst. Fourier, 28, Fasc. 2, (1978), 53-84. | EuDML | Numdam | MR | Zbl

[2] J.P. Bertrandias, C. Dupuis, Transformation de Fourier sur les espaces lp (Lp′), Ann. Inst. Fourier, 29, Fasc. 1, (1979), 189-206. | EuDML | Numdam | MR | Zbl

[3] R. Bürger, Funktionen vom Verschiebungstyp und Segalalgebren, Dissertation, Wien 1979.

[4] R. Bürger, Functions of translation type and functorial properties of Segal algebras II, Preprint. | Zbl

[5] H.G. Feichtinger, A characterization of Wiener's algebra on locally compact groups, Arch. Math., 24 (1977), 136-140. | MR | Zbl

[6] H.G. Feichtinger, The minimal strongly character invariant Segal algebra I, II, Preprint.

[7] A. Grothendieck, Topological vector spaces, Gordon and Breach, New York-London-Paris, 1973. | MR | Zbl

[8] E. Hewitt, K.A. Ross, Abstract harmonic analysis I, Grundl. d. math. Wiss., Springer-Verlag, Berlin-Heidelberg-New York, 1963. | MR | Zbl

[9] F. Holland, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., Ser II, 10 (1975), 295-305. | MR | Zbl

[10] J.P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse d. Math., 50, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR | Zbl

[11] H.E. Krogstad, Multipliers of Segal algebras, Math. Scand., 38 (1976), 285-303. | EuDML | MR | Zbl

[12] T.S. Liu, A. V. Rooij, J.K. Wang, On some group algebra modules related to Wiener's algebra M1, Pacific J. Math., 55 (1974), 507-520. | MR | Zbl

[13] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford at the Clarendon Press, 1968. | MR | Zbl

[14] H.G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abélien, C.R.A.S. Paris, t. 290, Série A (1980), 791-794. | MR | Zbl

[15] D. Poguntke, Gewisse Segalsche Algebren auf lokal-kompakten Gruppen, Arch. Math., 33 (1979), 454-460. | MR | Zbl

  • Feichtinger, Hans G.; Jakobsen, Mads S. Distribution Theory by Riemann Integrals, Mathematical Modelling, Optimization, Analytic and Numerical Solutions (2020), p. 33 | DOI:10.1007/978-981-15-0928-5_3
  • Enstad, Ulrik B.R.; Jakobsen, Mads S.; Luef, Franz Time-frequency analysis on the adeles over the rationals, Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, p. 188 | DOI:10.1016/j.crma.2018.12.004
  • Jakobsen, Mads S.; Luef, Franz Sampling and periodization of generators of Heisenberg modules, International Journal of Mathematics, Volume 30 (2019) no. 10, p. 1950051 | DOI:10.1142/s0129167x19500514
  • Balazs, Peter; Gröchenig, Karlheinz; Speckbacher, Michael Kernel theorems in coorbit theory, Transactions of the American Mathematical Society, Series B, Volume 6 (2019) no. 11, p. 346 | DOI:10.1090/btran/42
  • Jakobsen, Mads S. On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 6, p. 1579 | DOI:10.1007/s00041-018-9596-4
  • Lavanya, R. Lakshmi On the Fourier transform on function algebras on locally compact Abelian groups, Monatshefte für Mathematik, Volume 184 (2017) no. 4, p. 597 | DOI:10.1007/s00605-017-1069-3
  • Feichtinger, Hans G.; Narimani, Ghassem Fourier multipliers of classical modulation spaces, Applied and Computational Harmonic Analysis, Volume 21 (2006) no. 3, p. 349 | DOI:10.1016/j.acha.2006.04.010
  • Feichtinger, Hans G.; Weisz, Ferenc The Segal Algebra S0(Rd) and Norm Summability of Fourier Series and Fourier Transforms, Monatshefte für Mathematik, Volume 148 (2006) no. 4, p. 333 | DOI:10.1007/s00605-005-0358-4
  • Feichtinger, Hans G. Modulation Spaces: Looking Back and Ahead, Sampling Theory in Signal and Image Processing, Volume 5 (2006) no. 2, p. 109 | DOI:10.1007/bf03549447
  • Reiter, H. Theta functions and symplectic groups, Monatshefte f�r Mathematik, Volume 97 (1984) no. 3, p. 219 | DOI:10.1007/bf01299149
  • Losert, Viktor Properties of the Fourier algebra that are equivalent to amenability, Proceedings of the American Mathematical Society, Volume 92 (1984) no. 3, p. 347 | DOI:10.1090/s0002-9939-1984-0759651-8
  • Chen, Chang-Pao Constructions of the maximal strongly character invariant segal algebras and their applications, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 35 (1983) no. 1, p. 123 | DOI:10.1017/s1446788700024800
  • Losert, Viktor Segal algebras with functorial properties, Monatshefte für Mathematik, Volume 96 (1983) no. 3, p. 209 | DOI:10.1007/bf01605489
  • B�rger, Reinhard Functions of translation type and functorial properties of Segal algebras II, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 253 | DOI:10.1007/bf01320057
  • Feichtinger, Hans G. On a new Segal algebra, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 269 | DOI:10.1007/bf01320058

Cité par 15 documents. Sources : Crossref