Étude des propriétés des unions et intersections d’espaces
Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.
On étudie aussi les espaces
This paper is concerned with properties of unions and intersections of
In special cases, we find again properties of spaces studied by A. Beurling and by B. Koremblium.
We also study the spaces
@article{AIF_1978__28_2_53_0, author = {Bertrandias, Jean-Paul and Datry, Christian and Dupuis, Christian}, title = {Unions et intersections d{\textquoteright}espaces $L^p$ invariantes par translation ou convolution}, journal = {Annales de l'Institut Fourier}, pages = {53--84}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {2}, year = {1978}, doi = {10.5802/aif.689}, mrnumber = {81g:43005}, zbl = {0365.46029}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.689/} }
TY - JOUR AU - Bertrandias, Jean-Paul AU - Datry, Christian AU - Dupuis, Christian TI - Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution JO - Annales de l'Institut Fourier PY - 1978 SP - 53 EP - 84 VL - 28 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.689/ DO - 10.5802/aif.689 LA - fr ID - AIF_1978__28_2_53_0 ER -
%0 Journal Article %A Bertrandias, Jean-Paul %A Datry, Christian %A Dupuis, Christian %T Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution %J Annales de l'Institut Fourier %D 1978 %P 53-84 %V 28 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.689/ %R 10.5802/aif.689 %G fr %F AIF_1978__28_2_53_0
Bertrandias, Jean-Paul; Datry, Christian; Dupuis, Christian. Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution. Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 53-84. doi : 10.5802/aif.689. https://www.numdam.org/articles/10.5802/aif.689/
[1] Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the Ann. Math. Soc., n° 145 (1974). | MR | Zbl
and ,[2] The spaces Lp, with mixed norm, Duke Math. J., 28 (1961), 301-324. | Zbl
and ,[3] Potential theory on locally compact abelian groups, Springer 1975. | MR | Zbl
and ,[4] Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., 101 (1977). | MR | Zbl
,[5] Transformation de Fourier sur les espace lp(Lp'), Ann. Inst. Fourier 29 (1979). | Numdam | MR | Zbl
et ,[6] Construction and analysis of some convolution algebras, Ann. Inst. Fourier, 14 (1964), 1-32. | Numdam | MR | Zbl
,[7] Topological Riesz spaces and measure theory, Cambridge, 1974. | MR | Zbl
,[8] On a space of functions of Wiener, Duke Math. J., 34 (1967), 683-691. | MR | Zbl
,[9] A survey of abstract harmonic analysis, dans : Some aspects of analysis and probability, Wiley & sons, 1958. | MR | Zbl
,[10] Abstract harmonic analysis. 2 volumes, Springer, 1963 et 1970.
and ,[11] Harmonic analysis on amalgams of Lp and Lq, J. London Math. Soc., 2, 10 (1975), 295-305. | MR | Zbl
,[12] On certain special commutative normed rings. (en russe), Doklady Akad. Nauk SSSR, 64 (1949), 281-284.
,[13] Measures with separable orbits, Proc. Am. Math. Soc., 19 (1968), 569-572. | MR | Zbl
,[14] Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. | MR | Zbl
,[15] L1-algebras and Segal algebras, Lectures Notes n° 231, Springer 1971. | MR | Zbl
,[16] Measures algebras on abelian groups, Bull. Am. Math. Soc., 65 (1959), 227-247. | MR | Zbl
,[17] On functions and measures whose Fourier transforms are functions, Math. Ann., 179 (1968), 31-41. | MR | Zbl
,[18] Tauberian theorems, Ann. of Math., 33 (1932), 1-100. | JFM | Zbl
,- On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness, Journal of Nonlinear Science, Volume 34 (2024) no. 3 | DOI:10.1007/s00332-024-10018-6
- Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents, Constructive Approximation, Volume 57 (2023) no. 1, p. 161 | DOI:10.1007/s00365-022-09573-6
- Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces, Journal of Mathematical Analysis and Applications, Volume 520 (2023) no. 1, p. 126843 | DOI:10.1016/j.jmaa.2022.126843
- Weighted local Hardy spaces with variable exponents, Mathematische Nachrichten, Volume 296 (2023) no. 12, p. 5710 | DOI:10.1002/mana.202200248
- Some applications of the dual spaces of Hardy-amalgam spaces, Acta Mathematica Hungarica, Volume 166 (2022) no. 2, p. 507 | DOI:10.1007/s10474-022-01227-0
- New Characterizations of the Dual Spaces of Hardy-amalgam Spaces, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 3, p. 519 | DOI:10.1007/s10114-022-0572-1
- Homogenization of Richards' equations in multiscale porous media with soft inclusions, Journal of Differential Equations, Volume 281 (2021), p. 503 | DOI:10.1016/j.jde.2021.02.012
- On the homological and algebraical properties of some Feichtinger algebras, Mathematica Slovaca, Volume 71 (2021) no. 5, p. 1211 | DOI:10.1515/ms-2021-0049
- Modulation Spaces, Modulation Spaces (2020), p. 35 | DOI:10.1007/978-1-0716-0332-1_2
- Duals of Hardy Amalgam Spaces and Norm Inequalities, Analysis Mathematica, Volume 45 (2019) no. 4, p. 647 | DOI:10.1007/s10476-019-0001-6
- On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 1, p. 184 | DOI:10.1007/s00041-017-9577-z
- On some compact embeddings of a weighted space, Tbilisi Mathematical Journal, Volume 12 (2019) no. 2 | DOI:10.32513/tbilisi/1561082565
- On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 6, p. 1579 | DOI:10.1007/s00041-018-9596-4
- Coorbit Spaces with Voice in a Fréchet Space, Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 1, p. 141 | DOI:10.1007/s00041-016-9466-x
- Tent space boundedness via extrapolation, Mathematische Zeitschrift, Volume 286 (2017) no. 3-4, p. 1575 | DOI:10.1007/s00209-016-1814-7
- Choosing Function Spaces in Harmonic Analysis, Excursions in Harmonic Analysis, Volume 4 (2015), p. 65 | DOI:10.1007/978-3-319-20188-7_3
- Essential properties of spaces (the amalgams) and the implicit function theorem for equilibrium analysis in continuous time, Journal of Mathematical Economics, Volume 50 (2014), p. 187 | DOI:10.1016/j.jmateco.2013.06.002
- Calderón–Zygmund operators on amalgam spaces and in the discrete case, Journal of Mathematical Analysis and Applications, Volume 335 (2007) no. 1, p. 198 | DOI:10.1016/j.jmaa.2007.01.043
- Modulation Spaces: Looking Back and Ahead, Sampling Theory in Signal and Image Processing, Volume 5 (2006) no. 2, p. 109 | DOI:10.1007/bf03549447
- Local and global properties of functions and their Fourier transforms, Tohoku Mathematical Journal, Volume 49 (1997) no. 1 | DOI:10.2748/tmj/1178225187
- Gabor Wavelets and the Heisenberg Group: Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, Wavelets (1992), p. 359 | DOI:10.1016/b978-0-12-174590-5.50018-6
- The Spherical Wiener–Plancherel Formula and Spectral Estimation, SIAM Journal on Mathematical Analysis, Volume 22 (1991) no. 4, p. 1110 | DOI:10.1137/0522072
- Translation bounded measures and the orlicz-paley-sidon theorem, Probability Measures on Groups VII, Volume 1064 (1984), p. 1 | DOI:10.1007/bfb0073629
- Banach Spaces of Distributions of Wiener’s Type and Interpolation, Functional Analysis and Approximation (1981), p. 153 | DOI:10.1007/978-3-0348-9369-5_16
- On a new Segal algebra, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 269 | DOI:10.1007/bf01320058
- A characterization of minimal homogeneous Banach spaces, Proceedings of the American Mathematical Society, Volume 81 (1981) no. 1, p. 55 | DOI:10.1090/s0002-9939-1981-0589135-9
Cité par 26 documents. Sources : Crossref