Unions et intersections d’espaces Lp invariantes par translation ou convolution
Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 53-84.

Étude des propriétés des unions et intersections d’espaces Lp(s) relatifs à un ensemble S de mesures positives sur un groupe commutatif localement compact lorsque S est invariant par translation ou stable par convolution.

Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.

On étudie aussi les espaces p(Lp) formés des fonctions appartenant localement à Lp et qui ont un comportement p à l’infini.

This paper is concerned with properties of unions and intersections of Lp(s) spaces where s belongs to a set S of positive measures on a locally compact abelian group and where S is translation invariant or convolution invariant.

In special cases, we find again properties of spaces studied by A. Beurling and by B. Koremblium.

We also study the spaces p(Lp) of functions belonging locally to Lp and with p behaviour at infinity.

@article{AIF_1978__28_2_53_0,
     author = {Bertrandias, Jean-Paul and Datry, Christian and Dupuis, Christian},
     title = {Unions et intersections d{\textquoteright}espaces $L^p$ invariantes par translation ou convolution},
     journal = {Annales de l'Institut Fourier},
     pages = {53--84},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     number = {2},
     year = {1978},
     doi = {10.5802/aif.689},
     mrnumber = {81g:43005},
     zbl = {0365.46029},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.689/}
}
TY  - JOUR
AU  - Bertrandias, Jean-Paul
AU  - Datry, Christian
AU  - Dupuis, Christian
TI  - Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution
JO  - Annales de l'Institut Fourier
PY  - 1978
SP  - 53
EP  - 84
VL  - 28
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.689/
DO  - 10.5802/aif.689
LA  - fr
ID  - AIF_1978__28_2_53_0
ER  - 
%0 Journal Article
%A Bertrandias, Jean-Paul
%A Datry, Christian
%A Dupuis, Christian
%T Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution
%J Annales de l'Institut Fourier
%D 1978
%P 53-84
%V 28
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.689/
%R 10.5802/aif.689
%G fr
%F AIF_1978__28_2_53_0
Bertrandias, Jean-Paul; Datry, Christian; Dupuis, Christian. Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution. Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 53-84. doi : 10.5802/aif.689. https://www.numdam.org/articles/10.5802/aif.689/

[1] L. N. Argabright and J. Gil De Lamadrid, Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs of the Ann. Math. Soc., n° 145 (1974). | MR | Zbl

[2] A. Benedek and R. Panzone, The spaces Lp, with mixed norm, Duke Math. J., 28 (1961), 301-324. | Zbl

[3] C. Berg and G. Forst, Potential theory on locally compact abelian groups, Springer 1975. | MR | Zbl

[4] J.-P. Bertrandias, Unions et intersections d'espaces Lp sur un espace localement compact, Bull. Sc. Math., 101 (1977). | MR | Zbl

[5] J.-P. Bertrandias et C. Dupuis, Transformation de Fourier sur les espace lp(Lp'), Ann. Inst. Fourier 29 (1979). | Numdam | MR | Zbl

[6] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier, 14 (1964), 1-32. | Numdam | MR | Zbl

[7] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge, 1974. | MR | Zbl

[8] R. Goldberg, On a space of functions of Wiener, Duke Math. J., 34 (1967), 683-691. | MR | Zbl

[9] E. Hewitt, A survey of abstract harmonic analysis, dans : Some aspects of analysis and probability, Wiley & sons, 1958. | MR | Zbl

[10] E. Hewitt and K. A. Ross, Abstract harmonic analysis. 2 volumes, Springer, 1963 et 1970.

[11] F. Holland, Harmonic analysis on amalgams of Lp and Lq, J. London Math. Soc., 2, 10 (1975), 295-305. | MR | Zbl

[12] B. Koremblium, On certain special commutative normed rings. (en russe), Doklady Akad. Nauk SSSR, 64 (1949), 281-284.

[13] R. Larsen, Measures with separable orbits, Proc. Am. Math. Soc., 19 (1968), 569-572. | MR | Zbl

[14] H. Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. | MR | Zbl

[15] H. Reiter, L1-algebras and Segal algebras, Lectures Notes n° 231, Springer 1971. | MR | Zbl

[16] W. Rudin, Measures algebras on abelian groups, Bull. Am. Math. Soc., 65 (1959), 227-247. | MR | Zbl

[17] P. Szeptycki, On functions and measures whose Fourier transforms are functions, Math. Ann., 179 (1968), 31-41. | MR | Zbl

[18] N. Wiener, Tauberian theorems, Ann. of Math., 33 (1932), 1-100. | JFM | Zbl

  • Peter, Malte A.; Woukeng, Jean Louis On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness, Journal of Nonlinear Science, Volume 34 (2024) no. 3 | DOI:10.1007/s00332-024-10018-6
  • Izuki, Mitsuo; Nogayama, Toru; Noi, Takahiro; Sawano, Yoshihiro Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents, Constructive Approximation, Volume 57 (2023) no. 1, p. 161 | DOI:10.1007/s00365-022-09573-6
  • Suguro, Takeshi Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces, Journal of Mathematical Analysis and Applications, Volume 520 (2023) no. 1, p. 126843 | DOI:10.1016/j.jmaa.2022.126843
  • Izuki, Mitsuo; Nogayama, Toru; Noi, Takahiro; Sawano, Yoshihiro Weighted local Hardy spaces with variable exponents, Mathematische Nachrichten, Volume 296 (2023) no. 12, p. 5710 | DOI:10.1002/mana.202200248
  • Ablé, Z. V. P.; Feuto, J. Some applications of the dual spaces of Hardy-amalgam spaces, Acta Mathematica Hungarica, Volume 166 (2022) no. 2, p. 507 | DOI:10.1007/s10474-022-01227-0
  • Ablé, Zobo Vincent de Paul; Feuto, Justin New Characterizations of the Dual Spaces of Hardy-amalgam Spaces, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 3, p. 519 | DOI:10.1007/s10114-022-0572-1
  • Jäger, Willi; Woukeng, Jean Louis Homogenization of Richards' equations in multiscale porous media with soft inclusions, Journal of Differential Equations, Volume 281 (2021), p. 503 | DOI:10.1016/j.jde.2021.02.012
  • Rejali, Ali; Sabzali, Navid On the homological and algebraical properties of some Feichtinger algebras, Mathematica Slovaca, Volume 71 (2021) no. 5, p. 1211 | DOI:10.1515/ms-2021-0049
  • Bényi, Árpád; Okoudjou, Kasso A. Modulation Spaces, Modulation Spaces (2020), p. 35 | DOI:10.1007/978-1-0716-0332-1_2
  • Ablé, Z. V. P.; Feuto, J. Duals of Hardy Amalgam Spaces and Norm Inequalities, Analysis Mathematica, Volume 45 (2019) no. 4, p. 647 | DOI:10.1007/s10476-019-0001-6
  • Coulibaly, Sekou; Fofana, Ibrahim On Lebesgue Integrability of Fourier Transforms in Amalgam Spaces, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 1, p. 184 | DOI:10.1007/s00041-017-9577-z
  • Unal, Cihan; Aydin, Ismail On some compact embeddings of a weighted space, Tbilisi Mathematical Journal, Volume 12 (2019) no. 2 | DOI:10.32513/tbilisi/1561082565
  • Jakobsen, Mads S. On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 6, p. 1579 | DOI:10.1007/s00041-018-9596-4
  • Dahlke, S.; De Mari, F.; De Vito, E.; Labate, D.; Steidl, G.; Teschke, G.; Vigogna, S. Coorbit Spaces with Voice in a Fréchet Space, Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 1, p. 141 | DOI:10.1007/s00041-016-9466-x
  • Auscher, Pascal; Prisuelos-Arribas, Cruz Tent space boundedness via extrapolation, Mathematische Zeitschrift, Volume 286 (2017) no. 3-4, p. 1575 | DOI:10.1007/s00209-016-1814-7
  • Feichtinger, Hans G. Choosing Function Spaces in Harmonic Analysis, Excursions in Harmonic Analysis, Volume 4 (2015), p. 65 | DOI:10.1007/978-3-319-20188-7_3
  • Mertens, Jean-François; Rubinchik, Anna Essential properties of spaces (the amalgams) and the implicit function theorem for equilibrium analysis in continuous time, Journal of Mathematical Economics, Volume 50 (2014), p. 187 | DOI:10.1016/j.jmateco.2013.06.002
  • Kikuchi, Norio; Nakai, Eiichi; Tomita, Naohito; Yabuta, Kôzô; Yoneda, Tsuyoshi Calderón–Zygmund operators on amalgam spaces and in the discrete case, Journal of Mathematical Analysis and Applications, Volume 335 (2007) no. 1, p. 198 | DOI:10.1016/j.jmaa.2007.01.043
  • Feichtinger, Hans G. Modulation Spaces: Looking Back and Ahead, Sampling Theory in Signal and Image Processing, Volume 5 (2006) no. 2, p. 109 | DOI:10.1007/bf03549447
  • Fournier, John J. F. Local and global properties of functions and their Fourier transforms, Tohoku Mathematical Journal, Volume 49 (1997) no. 1 | DOI:10.2748/tmj/1178225187
  • Feichtinger, Hans G.; Gröchenig, Karlheinz Gabor Wavelets and the Heisenberg Group: Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View, Wavelets (1992), p. 359 | DOI:10.1016/b978-0-12-174590-5.50018-6
  • Benedetto, John J. The Spherical Wiener–Plancherel Formula and Spectral Estimation, SIAM Journal on Mathematical Analysis, Volume 22 (1991) no. 4, p. 1110 | DOI:10.1137/0522072
  • Bloom, Walter R. Translation bounded measures and the orlicz-paley-sidon theorem, Probability Measures on Groups VII, Volume 1064 (1984), p. 1 | DOI:10.1007/bfb0073629
  • Feichtinger, Hans G. Banach Spaces of Distributions of Wiener’s Type and Interpolation, Functional Analysis and Approximation (1981), p. 153 | DOI:10.1007/978-3-0348-9369-5_16
  • Feichtinger, Hans G. On a new Segal algebra, Monatshefte f�r Mathematik, Volume 92 (1981) no. 4, p. 269 | DOI:10.1007/bf01320058
  • Feichtinger, Hans G. A characterization of minimal homogeneous Banach spaces, Proceedings of the American Mathematical Society, Volume 81 (1981) no. 1, p. 55 | DOI:10.1090/s0002-9939-1981-0589135-9

Cité par 26 documents. Sources : Crossref