On présente ici une solution du problème d’approximation de Bernstein-Nachbin dans le cas complexe général, c’est-à-dire non nécessairement auto-adjointe. On généralise ainsi les résultats connus de cette théorie de la même façon que le théorème d’approximation de Bishop généralise le théorème de Weierstrass-Stone.
We present a solution to the (strict) Bernstein-Nachbin approximation problem in the general complex case. As a corollary, we get proofs of the analytic, the quasi-analytic, and the bounded criteria for localizability in the general complex case. This generalizes the known results of the real or self-adjoint complex cases, in the same way that Bishop’s Theorem generalizes the Weierstrass-Stone Theorem. However, even in the real or self-adjoint complex cases, the results that we obtain are stronger than the previously known results of the literature.
@article{AIF_1978__28_1_193_0, author = {Machado, S. and Prolla, Joao Bosco}, title = {The general complex case of the {Bernstein-Nachbin} approximation problem}, journal = {Annales de l'Institut Fourier}, pages = {193--206}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {1}, year = {1978}, doi = {10.5802/aif.685}, mrnumber = {81g:46069}, zbl = {0365.41007}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.685/} }
TY - JOUR AU - Machado, S. AU - Prolla, Joao Bosco TI - The general complex case of the Bernstein-Nachbin approximation problem JO - Annales de l'Institut Fourier PY - 1978 SP - 193 EP - 206 VL - 28 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.685/ DO - 10.5802/aif.685 LA - en ID - AIF_1978__28_1_193_0 ER -
%0 Journal Article %A Machado, S. %A Prolla, Joao Bosco %T The general complex case of the Bernstein-Nachbin approximation problem %J Annales de l'Institut Fourier %D 1978 %P 193-206 %V 28 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.685/ %R 10.5802/aif.685 %G en %F AIF_1978__28_1_193_0
Machado, S.; Prolla, Joao Bosco. The general complex case of the Bernstein-Nachbin approximation problem. Annales de l'Institut Fourier, Tome 28 (1978) no. 1, pp. 193-206. doi : 10.5802/aif.685. https://www.numdam.org/articles/10.5802/aif.685/
[1] A generalization of the Stone-Weierstrass theorem, Pacific J. Math., 11 (1961), 777-783. | MR | Zbl
,[2] Measures orthogonal to algebras and sets of antisymmetry, Trans, Amer. Math. Soc., 105 (1962), 415-435. | MR | Zbl
,[3] A variation on the Stone-Weierstrass theorem, Proc. Amer. Math. Soc., 14 (1963), 690-693. | MR | Zbl
,[4] Der beschränkte Fall des gewichteten Approximationsproblems für vektorwertige Funktionen, Manuscripta Math., 17 (1975), 123-149. | MR | Zbl
,[5] On the priority of algebras of continuous functions in weighted approximation, to appear in Symposia Mathematica. | Zbl
,[6] Elements of Approximation Theory, D. van Nostran Co., Inc., 1967. Reprinted by R. Krieger Co., Inc., 1976. | Zbl
,[7] Weighted approximation, vector fibrations, and algebras of operators, Journal Math. Pures et appl., 50 (1971), 299-323. | MR | Zbl
, , and ,[8] Bishop's generalized Stone-Weierstrass theorem for weighted spaces, Math. Ann., 191 (1971), 283-289. | MR | Zbl
,[9] Real and complex analysis, McGraw-Hill, New York, 1966. | MR | Zbl
,[10] Weighted approximation for modules of continuous functions II, in “Analyse fonctionnelle et applications” (Editor L. Nachbin), Hermann, Paris, 1975, p. 277-283. | MR | Zbl
,- Invertible weighted composition operators on weighted function spaces, Analysis Mathematica, Volume 20 (1994) no. 4, p. 283 | DOI:10.1007/bf01904058
- References, Composition Operators on Function Spaces, Volume 179 (1993), p. 273 | DOI:10.1016/s0304-0208(08)71595-0
- Multiplication operators and dynamical systems on weighted spaces of cross-sections, Proceedings of the American Mathematical Society, Volume 119 (1993) no. 2, p. 547 | DOI:10.1090/s0002-9939-1993-1155602-0
- The approximation-theoretic locaization of Schwartz's approximation property for weighted locally convex function spaces and some examples, Functional Analysis, Holomorphy, and Approximation Theory, Volume 843 (1981), p. 93 | DOI:10.1007/bfb0089271
- A Look at Approximation Theory, Approximation Theory and Functional Analysis, Proceedings of the International Symposium on Approximation Theory, Volume 35 (1979), p. 309 | DOI:10.1016/s0304-0208(08)72475-7
Cité par 5 documents. Sources : Crossref