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THE GENERAL COMPLEX CASE
OF THE
BERNSTEIN-NACHBIN APPROXIMATION PROBLEM

by S. MACHADO* and J.B. PROLLA

1. Introduction.

Throughout this paper X denotes a Hausdorff topological space,
and A C(X;K), where K =R orC, denotes a subalgebra. A vector
fibration over X is a pair (X, (F,), < x), where each F, is a vector space
over the field K. A cross-section is then any element f of the vector
space Cartesian product of the vector spaces F, , i.e., f = (f(x)),ex-
A weight on X is a function v on X such that v(x) is a ssminorm over
F, for each x € X. A Nachbin space LV, is a vector space of cross-
sections f such that the mapping x € X = v(x) [ f(x)] is upper semi-
continuous and null at infinity on X for each weight v € V, equipped
with the topology defined by the family of seminorms of the form

AN, =sup {v(x) [f(X)];x €X}.

For simplicity, and without loss of generality, the set V is assumed to
be directed, i.e., given u, v €V there is wE W and ¢ > 0 such that
ux)<t-wk)andv(x) < t- w(x), forall x € X.

Throughout this paper W CLV,_ denotes a vector subspace which
is an A-module, ie., if a€ A and gE€W, then the cross-section
ag = (a(x)g(x)),cx belongs to W. In this context, the Bernstein-
Nachbin approximation problem consists in asking for a description
of the closure of W in LV,,. Let P be a closed, pairwise disjoint covering
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of X. We say that W is P-localizable in LV, if its closure consists of
those f € LV,, such that, given any SEP, any vE YV and any € > 0,
there is some g €W such that v(x)[f(x) — g(x)] <e for all x €ES.
The strict Bernstein-Nachbin approximation problem consists in asking
for necessary and sufficient conditions for an A-module W to be P-
localizable, when P is the set P, of all equivalence classes Y CX mo-
dulo X/A. We recall that the equivalence relation X/A is defined as
follows. For any pair x, y € X, x is equivalent to y modulo X/A if,
and only if, a(x) = a(y) foralla € A.

In [7], the sufficient conditions for localizability established by
Nachbin (see e.g. Nachbin [6]) were extended to the context of vector-
fibrations, and a fortiori to vector-valued functions, in the case of
modules over real or self-adjoint complex algebras. In this paper we
extend the results of [7] to the general complex case, at the same
time getting stronger results. We extend the results of [7] in the same
way that Bishop’s theorem generalizes the Stone-Weierstrass theorem.

2. Definitions and lemmas.

In this section we collect all pertinent definitions. As we said in
the Introduction, W C LV, is always an A-module.

DEFINITION 1. — Let S, be the set of all fundamental weights
on R". (See 7], pg. 302.) We denote by Q;, the subset of Q, consist-
ing of those w €KY, which are symmetric, i.e., w(t) = w(|t|) for all
tER", where |t| =t |,...,It, D, if t=(t;,...,t,). Let T'| be
the subset of 2, consisting of those v € 2, such that 7 e Q, forall
k> 0. We denote by T the intersection I, N Y. Notice that Q2C
and similarly T CT. Here Q2 denotes the subset of all w € Q,, such
that |u| <|t| implies w(u)= w(t) for all u, t€ER" and then
rM=r, nol.

DEFINITION 2. — Let P be a closed, pairwise disjoint covering
of X. We say that W is sharply P-localizable in LV, if, given f € LV,
and v €V, there is some S € P such that

inf{lf—-gll,;g€EW}=inf {IlfIS —gl|Sll, ;g€ W}.
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DEFINITION 3. — For each vEYV and each & > 0, we
denote by L(W ;v ,8) the set of all cross-sections f € LV_, such that,
for each equivalence class Y C X modulo X/A, there is g €W such
that | 1Y — gl Y|, <6é.

DEFINITION 4. — Let © be the class of all ordinal numbers
whose cardinal numbers are less or equal than 2'X!, where | X | is the
cardinal number of X. For each o0 €6, we define a closed, pairwise
disjoint covering P, of X. For ¢ = 1, P, = {X}. Assume that P, has
been defined for all T < 0. We consider two cases.

a)o =71+ 1, for some T€E 6 ; let SEP,. Define Ag= {a €A ;
a | S is real valued}. Consider the partition of S into equivalence classes
modulo S/(Ag|S). The partition P, is then defined as the collection
of all such equivalence classes, as S ranges over P_.

b) If 0 has no predecessor, define x =y if, and only if, x and y
belong to the same set S, € P_ for all 7 < a. The partition P, is then
defined as the collection of all equivalence classes modulo the above
equivalence relation.

This defines P, for all 6 €€, and P, is a refinement of P_, for
7 < 0. This construction is taken from Bishop [1], who attributed it
to Silov. In Bishop [1], it is shown that there exists an ordinal p €6
such that Pp+l = Pp, and each SE€P, is anti-symmetric for A, ie.,
for a € A, a|S being real-valued implies that a | S is constant. In fact,
given an anti-symmetric subset K C X, for each ¢ €€ there is S, €P,
such that K CS;. Hence, each SEP, is a maximal anti-symmetric
set for A. The collection of all maximal anti-symmetric sets for A is

denoted by K, . So wehave P, = K, .

DEFINITION 5. — We say that the A-module W is sharply loca-
lizable under A in LV_ if, given f € LV, and v €V, for each 0 € there
exists an element S, € P such that :

a)S, CS, forallT <o,
b)inf {||f — gll, ; g €W} =inf {||f|S, -~ gIS,Il, ; g€ W}.

Remark. — Since P, = K,, W is sharply localizable under A
in LV_ implies that W is sharply J€, -localizable.
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DEFINITION 6. — We say that a subset G(A) C A is a set of
generators for A, if the subalgebra over K of A generated by G(A) is
dense in A for the compact-open topology of C(X ;K) ; and we say
that a set of generators G(A) C A is a strong set of generators if, for
any 0E€ QS and any SEP,, the set (Ag N G(A))|S is a set of gene-
rators for the algebra Ag|S. (Recall that Ag = {a € A ; alS is real-
valued}.) For example, the whole algebra A is a strong set of genera-
tors for A. Also, if the algebra A has a set of generators G (A) consis-
ting only of real-valued functions, then G (A) is a strong set of gene-
rators for the algebra A.

Similarly, a subset G(W) C W is a set of generators for W if
the A-submodule of W generated by G (W) is dense in W for the topo-
logy of the space LV_ . Let us call G(W)* the real linear span of
G (W).

LEMMA 7. — Let ACC,(X;R) be a subalgebra containing
the constants Given an equivalence class Y C X modulo X/A, and
a compact subset K C X, disjoint from Y, there is b € A such that
0<b<1,b(y)=1forally €Y,andb(t) <1 forallt € K.

Proof. — Choose y, € Y. For each ¢ € K, there is a, € A such

that a,(v,) # a,(t). Define b, € A by the following
b,(x) =1 — @,(x) — a,(3g)?/2 lla, — a,(vo) %

for all x € X, where for each f€ C, (X ;R), [Ifllx =sup {If(x)|;
x€X) Then0<b,<1;b,()=1forally €Y ;andbd,(x) <1,
if a,(x) #a,(yy) ; in particular, b,(t) < 1. The collection of open
sets U, = x € X ; b,(x) <1}, for t €K, is an open covering of the
compact set K. By compactness, there are ¢, ,...,¢, €K such
that KCU, U...UU, . Now b=(b, +...+0b, ) n has all
the desired properties.

LeMma 8. — Let ACC,(X;R) be a subalgebra containing
the constants. For each equivalence class Y C X modulo X/A, let
there be given a compact set Ky C X, disjoint from Y. Then there
exist equivalence classes Y, ,...,Y, CX modulo X/A such that
to each & > 0, there correspond a, ,...,a, € A with 0<gq, <1 ;
0<a,.(t)<8forallt€KYi,i= l,...,n;anda, +...+a, =1.
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Proof. — Let P, be the set of all equivalence classes Y C X
modulo X/A. Select one element Y, in P, and let P be the col-
lection of all Y &P, such that Y N Ky #®. Foreach YEP,
let by € A be given by Lemma 7; choose real numbers ry and
sy such that O < sup {by(x);x €Ky} <ry, <sy <1. Put
By = x€X;by(x)>sy) for each Y € P. Clearly, Y C By, so that
the collection {By ; Y € P}is an open cover of the compact set Ky .

By compactness, there are Y, , ..., Y, in P such that the finite collec-
tion {B,,...,B,}is acoverofKYl , where B, = By withY =Y, ,
i=2,...,n For each index i, appeal to Jewett [3], Lemma 2, to

get a real polynomial p; with p,(1) =1 ;0<p, <1;0<p;(t) <&
for al 0<t<vr; and 1-86<p(r)<1 for all 5;<t<1,
where r,=ry and s5; =sy with Y =Y, . Consider g; = p;(d,),

where b, = by with Y=Y,, for i=2,...,n Define a, = g,,
a;=(1-g,)8,....,a, =0 —-g) (1 —-gy)...(1-g,_,)g,. This
technique is from Rudin [9], item 2.13, Fori = 2,...,n, it is easily

seen that 0 <g; <1, and q;(x) <g;(x) <& for all x € K;, where
K; = Ky with Y = Y,. Moreover, we have

1Z2a,+...+a,=1-(1-8)0~-g)...(1 -g,)=0.
Let a4, =1-(,+...+4a,). Then 0<gqa, <1 and
at+...ta,=1 Let x€B,U...UB, be given. There is some

index j€ {2,..., n} such that x € B;. Then 1>g(x)>1-3,
so that we have '

a,)+...+a,x)=1-(1 —-g,-(x)) ]n—[ (1 -gb)N>1-5.
i=2

i#j

That is, a,(x) < & for x €B, U...UB, DKy , QFD.

Remark. — The above two lemmas embody techniq..s of peak
sets and peaking functions in the present context.

Notice the occurence of the unavoidable basic real analysis detail
in the proof of Lemma 8 above : it is the very simple Lemma 2 of
Jewett [3].
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3. A solution of the Bernstein-Nachbin
approximation problem.

THEOREM 9. — Suppose that there exist sets of generators
G(A) and G(W), for A and W respectively, such that :

1) G(A) consists only of real valued functions ;

2) given any vE€YV, a,,...,a, €EG(A), and g€ GW), there
area,, ,...,ay €G(A), with N 2 n, and w € Sy such that

v(x) [gX)] S w(e, (x),...,a,(x),...,ay(x))
forall x € X.
Then W is sharply localizable under A in LV,,.

We first remark that, since G(A) consists only of real valued
functions, p = 2 and P, = P, , where P, is the closed, pairwise disjoint
covering of X into equivalence classes modulo X/A. Hence, all that
we have to prove is that W is sharply P, -localizable in LV,,. The proof
will be partitioned into several lemmas, and to state them we need a
preliminary definition.

DEFINITION 10. — Let us call B the subalgebra of C,(X;R)
of all functions of the form gq(a,,...,a,), where n =1,
a,,...,a, € G(A), and q € C,(R"; R) are arbitrary.

LEMMA 11. — Assume that G(A) consists only of real valued
functions. Let fE€EL(W ;v ,\N). Then, for each € > 0, there exist
b,,...,b,€B,andg,,...,8, <€ GW)such that

lf_z b;8;

i=1

<A +te.

v

Proof. — For each Y €P,, there exists wy € G(W)* such that
V) [fx) —wy(x)] <X +€/2, for all x€Y. Let us define
Ky = t€X;0@0[f() — wy(®)] =\ + €/2}. Then K, is compact
and disjoint from Y. Since the equivalence relations X/A and X/B are
the same, we may apply Lemma 8 for the algebra B. Hence, there
exist equivalence classes Y,,...,Y, €P, such that to each § > 0,
there correspond 4,,...,h, €B with 0<h, <1 ; 0<h;(x) <&
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for x €K;, where Ki=KY,- for i=1,...,n. Moreover,
h,+...+h,=1 on X. Letuschoose & > 0 such that nMd < ¢/2,
where M = max {llf —w,ll,;i=1,...,n}, and w; =wy with
Y=Y, for i=1,...,n. Let w=hw +...+hw,. We

claim that v(x)[f(x) — w(x)] <A+ €, for all x € X. Indeed,

v(x) [f(x) —wk)] < 2 h ) v(x) [f(x) — w;(x)]

i=1

for all x € X. Now, if x €K, then k;(x) < 8, and therefore
h,x)v(x) [f(x) —w;(X)] <8I f— w;ll, <8M;
on the other hand, if x € K;, then the following estimate is true :
hy(x) v(x) [fG) — w; )] < B (x) (N + €/2) .
Combining both estimates, we get

v(x) [f(x) —wx)]<naM& + N +€/2)(h,(x) +--- + h,(x))
<AN+e.

Since each w; € G(W)*, there exist b,,...,b,, €B and g,,...
g&n €EG(W)such thatw =b,g, + -+ + b, 8,

LEMMA 12. — Suppose that the hypothesis of Theorem 9 are
satisfied. Given vEV, b€EB, g€ GW) and 6 > 0, there is wEW
such that |w — bgll, < 6.

Proof. — Suppose that b =gq(a,,...,a,). Given vE€V and
g€ G(W) there are a,,,,...,ay € G(A), where N = n, and w € Qy
such that v(x) [g(X)] < w(a,(x),...,a,(x),...,ayx(x)) for all x € X.
Define r€ C,(RN;R) by setting r(t)=q(t,,...,t,) for all
t=(t,,...,t,,..., ty) ERN. By hypothesis w € §y; hence
C,(RN;R) is contained in Cw,(RN;R) and ®(RY) is dense in
Cw.(RN;R). Given § > 0, we can find a real polynomial p € 2(RV)
such that |lp — rll, <4&. From this it follows that (lw — bgl|, < §,
where w =p(a,,...,a,,...,a)g €AW CW.
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LEMMA 13. — Suppose that the hypothesis of Theorem 9 are
satisfied. Then, for each f € LV_and v € V we have

d=inf {lf—gll, ;g €W}
=sup {inf {| 1Y —glYIll, ;e6€W};YEP,}.

Proof. — Clearly, ¢ < d, where we have defined
= sup {inf {lIlfIY —glYll,; g €EW}; Y €EP,}.
To prove the reverse inequality, let € > 0. For each Y € P,, there
exists gy €W such that o(x)[f(x) — gy(x)] < c + €/3 for all
x €Y. Therefore, f€L(W;v,c+ €/3). By Lemma 11 applied
with A =c¢ + €/3 and €/3, there exist b,,...,b, €B and
& --->8&n € G(W) such that:

"f— i b;g;

<(c+€/3)+¢€/3.

i=1

v

By Lemma 12 applied with & = €/3m, there are cross-sections
Wi,..., W, €W such that ||lw;, — b;g; ll, < ¢/3m. From this it follows
that |If—gll, <c +e€, where g=w, +---+w, . Since g€W,
d < c¢ + €. Since € > 0 was arbitrary, d < c, as desired.

Proof of Theorem 9. — Let f€ LV, and v € V be given. Let Z
be the quotient space of X by the equivalence relation X/A, and let
m : X — Z be the quotient map. By Lemma 1 of [7], the map

zEZ > |Ifln (@) —gln '@,

is upper semicontinuous and null at infinity on Z, for each g € W.
Hence the map defined by

h@z) =inf {lIfIin~1(z) —gln~'(2)|l,; 8 €W}

for all z € Z, is upper semi-continuous and null at infinity on Z too.
Therefore h attains its supremum on Z at some point z. Consider the
equivalence class Y = 77 1(z) modulo X/A. On the other hand, the
supremum of the map 4 is by Lemma 13 equal to d. Thus, we have
found an equivalence class Y C X modulo X/A such that

inf {llf—gll, ;g €W} =inf {If1Y —¢glYll, ;g€ W}.

By Definitions 2 and 5 and the remark made before Definition 10, the
module W is sharply localizable under A in LV _,.
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Remark. — Theorem 9 above is a strengthened form of Theorem 2
of [7]. It reduces the search of sufficient conditions for sharp localiza-
bility to the search of fundamental weights in the sense of Bernstein
in R", ie., to the Finite Dimensional Bernstein Approximation
Problem.

THEOREM 14. — Suppose that there exist sets of generators
G(A) and G(W), for A and W respectively, such that :

1) G(A) is a strong set of generators for A ;

2)given any vEYV, a,,...,a, € G(A) and g € G(W), there
exists w € Slf‘ such that v(x) [gXx)]<w(a,xX)|,...,la,x)])
forall x € X.

Then W is sharply localizable under A in LV.,.

Proof. — Let 0 €6. Assume that for each 7 < ¢ we have found
an element S, € P_ such that

a)S, C Su foralluy <7,
b)inf {|l f—gll, ;g €W} =inf {||fIS, -gIS,ll, ;8 €W}

First case. 0 = 7 + 1 for some 7 €6. By the induction hypothesis
there is S, € P, such that a) and b) are true. Let A, be the subalgebra
of all a € A such that a|S, is real-valued. By Theorem 9 applied to the
algebra A_|S, and the module W|S_ there is a set S, € P, =P_,
such that

inf || fIS—glIS|l, = inf || fI|S, —glS,ll,
gEW ZEW
On the other hand, S, C S, by construction.

Second case. The ordinal 0 € © has no predecessor. Define
S, =N{S, ;7<0}. ThenS, €P, and S, C S_ forall 7 < g. Assume
that inf {ll fI1S, —g1S,1l, ; € € W} <d, where we have defined
d=inf {||f—¢gll, ;g €W}. (The case d = 0 is trivial.) There exists
g € W such that || IS, — glS, Il, <d. Let U C X be the open set
{(teX;v@)[f@®) —g()] <d}. Then the complement of U in X
is compact, and S, C U. By compactness, there exist 7, <---<r7, <0
such that X\ U C (X\S,)U...U(X\S,), where S; = S_ with 7, = 7.
However, since S, C...CS,, it follows that S, C U, a contradiction
to b), becauser, < 0.
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Remark. — Theorem 14 above implies the case N =n of Theorem
3, [7]. Indeed, if A is self-adjoint, and G (A) is a set of generators for
A satisfying the hypothesis of Theorem 3 of [7], with N = n, then the
set ReG(A) U ImG (A) is a strong set of generators for A satisfying the
hypothesis of Theorem 14 above, since Sl‘,’, CQ ,and|Rea|<|al,
|[Ima|<|a]|,forany complex numbera = Rea + ilm a.

Our next theorem reduces the search of sufficient conditions for
sharp localizability to the One-Dimensional Bernstein Approximation
Problem.

THEOREM 15. — Suppose that there exist sets of generators G (A)
and G (W), for A and W respectively, such that :

1) G(A) is a strong set of generators for A ;

2) given any vE€V, a € G(A), and g € G(W), there exists
v € 'Y such that v(x) [g(x)] <7v(la(x)|) forall x € X.

Then W is sharply localizable under A in LV, .

Proof. — Given any vE€V,a,,...,a, €G(A),and g € G(W),
there are v; € I} such that v (x) [g (x)] < 7, (Ig;(x)]) for all x € X,
i=1,...,n Define w on R" by w(®) = [v,(t,)...7,,)]'" for
alt=(t, ,...,t,). Then w € , by Lemma 1, § 27, [6]. Obviously,

w(?) = w(|t]) for all t ER". Hence, w € £, . By Theorem 14, W is
sharply localizable under Ain LV, .

Remark. — Theorem 15 above implies Theorem 6 of [7]. Indeed,
the same argument used in the previous remark applies here.

4. Sufficient conditions for sharp localizability.

THEOREM16. — (Analytic criterion) . — Suppose that there exist
sets of generators G (A) and G(W) such that .

1) G (A) is a strong set of generators for A ;

2) given any v €V, a € G(A), and g € G(W), there are constants
M >0 and m > 0 such that v(x)[g(x)] < Me 1@ for all x € X.

Then W is sharply localizable under A in LV ...
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Proof — The function y(t) = M e ~™!*! defined for all ¢ € R,
belongs to I'Y by Lemma 2, § 28 of [6]. It remains to apply Theorem
15 above.

THEOREM 17. — (Quasi-analytic criterion). — Suppose that there
exist sets of generators G (A) and G (W) such that :

1) G(A) is a strong set of generators for A ;

2) givenanyv € V,a € G(A),and g € G (W), we have

oo

S )t =t

m=1
where M,, = lla"gll, form=0,1,2,....
Then W is sharply localizable under A in LV, .

Proof. — Define ¥ on R as the proof of Theorem 9, [7], and
then apply Theorem 15 above.

THEOREM 18. — (Bounded case). — Suppose that there exist sets
of generators G (A) and G (W), for A and W respectively, such that :

1) G (A) is a strong set of generators for A

2) given any v €V, a € G(A), and g € G(W), the function a
is bounded on the support of v [g].

Then W is sharply localizable under A in LV, .

Proof. — Let vE YV, a € G(A), and g € G(W) be given. Let
m >sup {la(x)|;x €S}, where S is the support of the function
v[g] ; and let M > |l gll,. If v is the characteristic function of the
interval [—m,m] C R times the constant M, then y €I'{ and

v(x)[gx)]<7v(la(x)|) for all x€ X. It remains to apply
Theorem 15.

5. Vector-valued functions.

The above Theorem 18 generalizes Theorem 4, § 2 of Kleinstiick
[4], which in turn was a generalization of Theorem 4.5 of Prolla [8],
and the result of Summers [10].
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Indeed, consider the case in which F, = E , for all x € X, where
E is a locally convex space ; V is a directed set of upper semicontinuous
positive functions on X ; and we take the Nachbin space LV, to be
CV.(X;E), ie., the vector space of all continuous functions
f € C(X ; E) such that vf vanishes at infinity on X, equipped with the
topology given by the seminorms

Al , =sup () p(fx));x € X}

when v €V and p € cs(E), the set of all continuous seminorms on
E. In this case Theorem 18 reads as follows :

THEOREM 19. — Let W C CV,, (X ; E) be an A#module. Suppose
that there exist sets of generators G (A) and G (W), for A and W respec-
tively, such that :

1) G (A) is a strong set of generators for A ;

2) given any vEV, p € cs(E), a € G(A), and g € G(W), the
function a is bounded on the support of the function vp (g).

Then W is sharply localizable under A in CV_, (X ; E).

COROLLARY 20. — Let WCCV_(X;E) be an A-module.
Suppose that every a € A is bounded on the support of every v € V.
Then W is sharply localizable under A in CV_, (X ; E).

Proof. — The set A is a strong set of generators for A. Since
the support of v contains the supports of x —> v (x)p (g (x)) for any
continuous seminorm p € cs(E) and any g €W, we may apply
Theorem 19 with G(A) = Aand G(W) = W.

CoROLLARY 21. — (Kleinstiick [4]). — Assume the hypothesis
of Corollary 20. Then for every f € CV,, (X ; E), f belongs to the closure
of Win CV, (X ; E) if, and only if, givenany v €V, p € ¢s(E),e > 0,
and K € K, there exists g € W such that v(x) p (f(x) — g(x)) <e
forall x € K.
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Proof. — By Corollary 20, W is sharply localizable under A in
CV. (X ;E). Therefore, W is sharply K, —localizable, i.e., given
feCvV_ (X;E), veV, p € cs(E), there is some maximal antisym-
metric set K € JC4 such that.

inf {lf —gll,, ;8 €EW}=inf {IlfIK —¢gIKll, , ;8 €EW}.

This formula generalizes that obtained by Glicksberg in the case of
Bishop’s Theorem (see [2]), and from it there follows the desired
conclusion.
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