Soit
For
@article{AIF_1975__25_2_81_0, author = {Cwikel, Michael}, title = {The dual of weak $L^p$}, journal = {Annales de l'Institut Fourier}, pages = {81--126}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {2}, year = {1975}, doi = {10.5802/aif.556}, mrnumber = {53 #11355}, zbl = {0301.46025}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.556/} }
Cwikel, Michael. The dual of weak $L^p$. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 81-126. doi : 10.5802/aif.556. http://www.numdam.org/articles/10.5802/aif.556/
[1] A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97-98.
and ,[2] On the conjugates of some function space, Studia Math., 45 (1973), 49-55. | MR | Zbl
,[3] Some results in the Lions-Peetre interpolation theory, Thesis, Weizmann Institute of Science, 1973. | MR | Zbl
,[4] L(p, ∞)*, Indiana Univ. Math. J., 21 (1972), 781-786.
and ,[5] Linear Operators, Part I : General Theory, Interscience, New York 1958. | MR | Zbl
and ,[6] On L(p,q) spaces, L'Enseignement Math., 12 (1966), 249-276. | MR | Zbl
,[7] Reflexivity and the sup of linear functionals, Israël J. Math., 13 (1972), 289-330. | MR | Zbl
,[8] Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR | Zbl
,- Lorentz spaces depending on more than two parameters, Annals of Functional Analysis, Volume 15 (2024) no. 2 | DOI:10.1007/s43034-023-00313-w
- Global well-posedness and scattering of the defocusing energy-critical inhomogeneous nonlinear Schrödinger equation with radial data, Journal of Mathematical Analysis and Applications, Volume 536 (2024) no. 2, p. 128202 | DOI:10.1016/j.jmaa.2024.128202
- Connection Between Weighted Tail, Orlicz, Grand Lorentz And Grand Lebesgue Norms, Results in Mathematics, Volume 79 (2024) no. 3 | DOI:10.1007/s00025-024-02136-0
- Boundedness and Compactness for the Commutator of the ω-Type Calderón-Zygmund Operator on Lorentz Space, Acta Mathematica Scientia, Volume 43 (2023) no. 4, p. 1587 | DOI:10.1007/s10473-023-0409-8
- On the weak convergence of shift operators to zero on rearrangement-invariant spaces, Revista Matemática Complutense, Volume 36 (2023) no. 1, p. 91 | DOI:10.1007/s13163-022-00423-4
- On noncommutative weak Orlicz–Hardy spaces, Annals of Functional Analysis, Volume 13 (2022) no. 1 | DOI:10.1007/s43034-021-00150-9
- Toeplitz Operators with Non-trivial Kernels and Non-dense Ranges on Weak Hardy Spaces, Toeplitz Operators and Random Matrices, Volume 289 (2022), p. 463 | DOI:10.1007/978-3-031-13851-5_20
- Fractional integration for irregular martingales, Tohoku Mathematical Journal, Volume 74 (2022) no. 2 | DOI:10.2748/tmj.20210104
- Wavelet Bases in Banach Function Spaces, Bulletin of the Malaysian Mathematical Sciences Society, Volume 44 (2021) no. 3, p. 1669 | DOI:10.1007/s40840-020-01024-4
- Algebras of Convolution Type Operators with Continuous Data do Not Always Contain All Rank One Operators, Integral Equations and Operator Theory, Volume 93 (2021) no. 2 | DOI:10.1007/s00020-021-02631-x
- Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type, Nonlinear Analysis, Volume 203 (2021), p. 112162 | DOI:10.1016/j.na.2020.112162
- Real-Variable Characterizations of Hardy–Lorentz Spaces on Spaces of Homogeneous Type with Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators, Analysis and Geometry in Metric Spaces, Volume 8 (2020) no. 1, p. 182 | DOI:10.1515/agms-2020-0109
- M-embedded symmetric operator spaces and the derivation problem, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 169 (2020) no. 3, p. 607 | DOI:10.1017/s030500411900029x
- Duality and distance formulas in Banach function spaces, Journal of Elliptic and Parabolic Equations, Volume 5 (2019) no. 1, p. 1 | DOI:10.1007/s41808-018-0030-5
- Symmetrization, factorization and arithmetic of quasi-Banach function spaces, Journal of Mathematical Analysis and Applications, Volume 470 (2019) no. 2, p. 1136 | DOI:10.1016/j.jmaa.2018.10.054
- The Brown–Halmos theorem for a pair of abstract Hardy spaces, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 1, p. 246 | DOI:10.1016/j.jmaa.2018.11.022
- Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces, Acta Mathematica Scientia, Volume 38 (2018) no. 1, p. 1 | DOI:10.1016/s0252-9602(17)30115-7
- Weak Morrey spaces with applications, Mathematische Nachrichten, Volume 291 (2018) no. 1, p. 178 | DOI:10.1002/mana.201700001
- Convex Functions and Inequalities, An Introductory Course in Lebesgue Spaces (2016), p. 1 | DOI:10.1007/978-3-319-30034-4_1
- Lorentz Spaces, An Introductory Course in Lebesgue Spaces (2016), p. 215 | DOI:10.1007/978-3-319-30034-4_6
- Interpolation of Operators, An Introductory Course in Lebesgue Spaces (2016), p. 313 | DOI:10.1007/978-3-319-30034-4_8
- Maximal Operator, An Introductory Course in Lebesgue Spaces (2016), p. 331 | DOI:10.1007/978-3-319-30034-4_9
- Integral Operators, An Introductory Course in Lebesgue Spaces (2016), p. 359 | DOI:10.1007/978-3-319-30034-4_10
- Convolution and Potentials, An Introductory Course in Lebesgue Spaces (2016), p. 383 | DOI:10.1007/978-3-319-30034-4_11
- Lebesgue Spaces, An Introductory Course in Lebesgue Spaces (2016), p. 43 | DOI:10.1007/978-3-319-30034-4_3
- Anisotropic Hardy-Lorentz spaces and their applications, Science China Mathematics, Volume 59 (2016) no. 9, p. 1669 | DOI:10.1007/s11425-016-5157-y
- L p Spaces and Interpolation, Classical Fourier Analysis, Volume 249 (2014), p. 1 | DOI:10.1007/978-1-4939-1194-3_1
- Sobolev‐Jawerth embedding of Triebel‐Lizorkin‐Morrey‐Lorentz spaces and fractional integral operator on Hardy type spaces, Mathematische Nachrichten, Volume 287 (2014) no. 14-15, p. 1674 | DOI:10.1002/mana.201300217
- Chaotic dynamics of the heat semigroup on the Damek-Ricci spaces, Israel Journal of Mathematics, Volume 198 (2013) no. 1, p. 487 | DOI:10.1007/s11856-013-0035-6
- The dual of Lp,∞(M), Journal of Mathematical Analysis and Applications, Volume 398 (2013) no. 2, p. 814 | DOI:10.1016/j.jmaa.2012.08.064
- Weak Orlicz spaces: Some basic properties and their applications to harmonic analysis, Science China Mathematics, Volume 56 (2013) no. 4, p. 789 | DOI:10.1007/s11425-012-4452-5
- A Decomposition of the Dual Space of Some Banach Function Spaces, Journal of Function Spaces and Applications, Volume 2012 (2012), p. 1 | DOI:10.1155/2012/737534
- Estimates for a class of oscillatory integrals and decay rates for wave-type equations, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 1, p. 139 | DOI:10.1016/j.jmaa.2012.04.070
- The dual of noncommutative Lorentz spaces, Acta Mathematica Scientia, Volume 31 (2011) no. 5, p. 2067 | DOI:10.1016/s0252-9602(11)60382-2
- Planar quasilinear elliptic equations with right-hand side in
, Discrete Continuous Dynamical Systems - A, Volume 31 (2011) no. 4, p. 1053 | DOI:10.3934/dcds.2011.31.1053 - Weak Orlicz space and its convergence theorems, Acta Mathematica Scientia, Volume 30 (2010) no. 5, p. 1492 | DOI:10.1016/s0252-9602(10)60141-5
- Pointwise symmetrization inequalities for Sobolev functions and applications, Advances in Mathematics, Volume 225 (2010) no. 1, p. 121 | DOI:10.1016/j.aim.2010.02.022
- Weak convergence in the dual of weak Lp, Israel Journal of Mathematics, Volume 176 (2010) no. 1, p. 209 | DOI:10.1007/s11856-010-0026-9
- Weak Orlicz space and its applications to the martingale theory, Science China Mathematics, Volume 53 (2010) no. 4, p. 905 | DOI:10.1007/s11425-010-0065-z
- Weak type inequalities for vector-valued martingales, Statistics Probability Letters, Volume 80 (2010) no. 13-14, p. 1128 | DOI:10.1016/j.spl.2010.03.007
- Rearrangement Invariant Continuous Linear Functionals on Weak L1, Positivity, Volume 12 (2008) no. 1, p. 119 | DOI:10.1007/s11117-007-2111-9
- TheL 1 structure of weakL 1, Mathematische Annalen, Volume 269 (1984) no. 2, p. 235 | DOI:10.1007/bf01451421
- Application of Carleson measures to partial differential equations and Fourier multiplier problems, Harmonic Analysis, Volume 992 (1983), p. 16 | DOI:10.1007/bfb0069150
- On Banach modules I, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 90 (1981) no. 3, p. 423 | DOI:10.1017/s0305004100058904
Cité par 44 documents. Sources : Crossref