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THE DUAL OF WEAK 17

by Michael CWIKEL (*)

1. Introduction.

For any given p in (0 , oo), the space Weak If on a given measure
space (X, 2 , ̂ ) consists of those (equivalence classes of) real or
complex valued measurable functions/(x), whose distribution func-
tions /^(a),

/^)=/x({x| l/0c)| >a})

satisfy sup ap /^(a) < °°.
a >0

The quasi norm |/L =(sup c^/^o)!^ defines a topology on
\x>o /

Weak If. \f is continuously embedded in Weak Lp. Weak If claims
our attention largely because of the Marcinkiewicz interpolation
theorem, and the fact that several important operators such as the
Hilbert transform and the Hardy-Littlewood maximal function which
map If into If for p > 1, map L1 into Weak L1.

It is convenient for some purposes to consider \f and Weak
\f within the more general framework of the Lorentz spaces L(p , q).
Let us recall the definition of these spaces.

For each measurable function / on X with distribution function
/^(a), we define the non-increasing rearrangement f*(t) o f / b y :

/*(0 = in f{a > 0 | /^(a) < t} for all t > 0

(with the usual convention that the infimum of the empty set is + °°).

(*) Supported in part by the C.N.R.S.
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For 0 < p < oo^ 0 < ^ < o o , define

11/11̂  = (j^ (t^ r(W dtlt\
o /

1/<7

and for 0 < p < o°, ^ = 0 0 ,

II/II* == sup ^l/p /*0).
P.0 r>o

Then for the above values ofp and q the Lorentz spaces are defined by:

L ( p , ^ ) = { / | 11/11*^ <oo}.

It is easy to see that Up , p) = L^ and that sup c^/ (a) = ( I I / II* J7',
a>0

so that L(p , oo) = Weak L^.
I I / I I* is not a norm since the triangle inequality may fail. HoweverP.<7
for l < p < ° ° , 1 < ^ < ° ° , the L(p , q) topology may be defined
by the norm :

— / r^i/p ^**^\\o ^^/^\1^
ll/"L(p,,) = iC^ ^**(r))<7 dt/t)l/q for ^

<oo
.Q)

= sup t1^ /**(r) for ^ =00,
t>0

where /**(^) is defined by :

/**(0 =supj(^(E))-1 f |/|^ | Ee2,^(E)>rjfor 0<r<^(X)
\ ^K /

= t-1 f^ I /I ̂  for t > M(X).

If the measure space is non-atomic,

suplox(E))-1 f |/|^| Ees , M ( E ) > r !
( "E )

= sup r1 f I/I dii I EG 2 , AI(E) = t\,
JE )

and consequently
II/HL^.) = supj^E)1^-1 ^ I/I dii | EG 2

In the non-atomic case it also follows that :

r*(t) = t - 1 rf\s)ds.
•'o
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A detailed study of the Lorentz spaces has been made by
Hunt [6]. It includes characterisations of their dual spaces for all
values of p and q with q finite. L(p , oo)* for 0 < p < 1 has been
studied in [2] and [4]. We summarise the results in Table 1.

Table 1
The dual space of L(p , q) for various values ofp and q.

(\lp + \lp = 1 == \lq 4- \lq)

0<q < 1

q= 1

1 <q<oo

q = oo

0 < ^ < 1

={0}
if the
measure
space is non
atomic. [6]

= {0}if
measure space
is non atomic.
12]

P = x

= L ^
For 0 < q < 1, UP , q}* = L(p , 1)*
This follows readily from theorem 2.5
of [6]

== L1*
= L°° for a
o-finite measure
space [5].

is non trivial,
though functio-
nals vanish on
all simple
functions [4]

1 < p < o°

= L(p' , °o)

= Up' , °o) [6]

= Up , q ) [ 6 ]

= U p , D ^ S ^ e S ^
shown in this
paper

p == oo

L(°°, q) is
undefined for
all q < °°

= L00*, the
space of bounded
finitely additive
set functions. [5]

In this paper we consider L(p , °°)* for 1 < p < °°. For this
range of values of p , L(p , °°) is a Banach space with norm as defined
above. The underlying measure space (X , Z , ̂ ) will be taken to
be non atomic, except where explicitly stated otherwise. It will be
seen that L(p , °°)* can be expressed as the direct sum of three
spaces, L ( p ' , 1) ® S^ © S^, where 1/p + \lp = 1. The spaces Sp and
S^ consist of functionals which exhibit a singular behavior similar
to that seen in all elements of L(l , oo)* ; they annihilate all functions
which are bounded and supported on any set of finite measure.
(There are also some essential differences between the elements of
SQ and S ,̂ and those of L(l , °°)*, as shown in [3]).



84 M. CW1KEL

Characterisations of Sp and S^ are obtained, and both spaces
are seen to be reflexive. Thus we readily deduce the form of the nth

dual of L(p , oo).
We note that, as indicated in Table 1, L ( p ' , 1)* = L(p ,°°).

It will be clear that the embedding of U p ' , 1) into L(p', 1) © SQ © S^
is the canonical embedding of L ( p ' , 1) into its double dual.

We shall use the notation ~z for the complex conjugate of any
complex number (or complex valued function) z. The function sgn
will be defined by

sgn(z) = z/|z| for all z ^ O
= 0 for z = 0.

The open subinterval (0, ^(X)) of the real line will be denoted
by I.

2. Some technical preliminaries —
continuously monotone families.

The definitions and consequent observations to be made in this
section constitute a more careful look at the procedure which yields
the non-increasing rearrangement function /*(0 from a measurable
function / on X. Our aim is to have an apparatus with whose help we
may work with / almost as easily as if it were itself a non-increasing
function on the positive real axis. Roughly speaking we shall find
a "direction" in X in which / is decreasing and looks rather like
f*(t). The simple notion of a continuously monotone family of sets
is central here, and it will also be important later, in describing the
continuous linear functionals on L(p , °°).

LEMMA 1. — Let g be a positive measurable function on X, such
that g^(t) and g*(t) are both finite for all t > 0. Then

t - ̂ ({x\g(x) = g^(t)}) <^^*(r)) < t

for all t, 0< t< jn(X).
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Proof. — By the expanding sequence theorem,

lim g (a 4- — ) = g (a)n-ooo ^V n l *

for all a G [0, °°), and by the contracting sequence theorem,

lim ^ (a - - )= /i({x|^) > a}) = ^ (a) + ^L({x\g(x) = a})
M-^oo \ n / ^

for all a E (0, oo). By definition of g*(t),

^(^(0+^)<^<^(^(0-^)

for each n. It remains only to pass to the limit as n tends to infinity.
But to deal with those t for which g*(t) = 0 (and consequently
g^(0) ̂  0 we need the additional remark that

^(X)=^({;cl^0c)=0})+^(0),

and so t - ^({x\g(x) = 0}) = t - j^(X) + g^O) < ̂ (0).

DEFINITION. — A continuously monotone family (C.M.F.) on X
is a family (A^) of measurable subsets A^ of X ^c/z ^/z^ :

O^f^^l^yC)

i) Ao = 0 , A^x) = X.

ii) t < s implies A{ C Ay.

iii) ^i(A^) = t for each t, 0 < t < JLI(X).

DEFINITION. — £e^ g be a positive measurable function on X.
Z^ (Ay) be a C.M.F. on X. We shall say (Ay) carries g if,

0 ̂  ̂ ^^i(X)

for all r, 0<r<Ai(X)

ess sup{^(x)| x € X\Ay} < ess inf{g(x) | x G Ay} .

(For example if X = (0 , °°) and Ay = (0 , t) then (Ay) carries all
non-increasing functions).

With the help of Lemma 1 we can verify the not very sur-
prising fact that each function g > 0 with g^(t) and g*(t) both finite
for all t > 0, is carried by a C.M.F. Given g, let E^ = {x \ g(x) = X}
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for each X > 0. Since X is non-atomic, there exists a C.M.F. on E^,
(fi^)^^ ^ . (Of course E^ will have zero measure anyway for

"most" values of X, and ^(E^) could be infinite). For each t G (0, ju(X)),
let

\={x\g(x)>g^t)}UB^^.

This is well defined since, by Lemma 1, 0 < t — g^(g*(t)) < /x(E *^).
To verify that (A^) is a C.M.F. first note that

^(A,) == ̂ *(D) + 0 - ̂ Qr*0))) = r.

For the inclusion property, take t < s. Either g*(t) = ^*(^) or
^W > g*(s). In the former case A^ C A,, since B^ ^^ C B^_ ^^
(where X = g*(t) = g*(s)), and in the latter case again A^ C A^, since

A, C {x | g(x) > g*(t)} C {x | g(x) > g^(s)} C A,.

It is obvious from the definition of (A^) that it carries g.
We next consider an alternative definition of the non-increasing

rearrangement (cf. [8]). Let g(x) be any measurable function on an
arbitrary measure space (X , 2 , ^i). Define two non-increasing functions
^(Oandg^Don^, oo).

g^t) = inf (ess sup \g(x)\} for t < ̂ z(X)
Ee£,/z(E)<f \JC(EX\E /

= = 0 for ^ > jLi(X)

^0) = sup (ess inf |^(x)l) for ^ < /i(X)
Ee£,Ai(E)>f \ jcGE /

= 0 for r > IJL(X).

LEMMA 2. - Let (A^) ^ < c^^ ^e positive measurable func-

tion gfor which g^(t) < oo , g*(t) < oofor all t > 0. Then

g\t) = ess sup{ g(x) | ^ E X \ AJ

^rf ^0) = ess inf {g(x) \ x G AJ.

flroo/ - Let E be any measurable set with JLI(E) < ;.
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Then ess sup^O") = max [ess supg(x) , ess sup^(x)]
X\E X\E\A^ A^\E

and ess s\xpg(x) = max [ess supg(x) , ess sup^(x)].
X\A^ X\E\A^ E\A^

Since (A^) carries g, if ^i(A^\E) and /x(E^\A) are positive,

ess supg(x) < ess sup^(x) < ess mfg(x) < ess supg(x).
E\A^ X\A^ A^ Ay\E

Ifjn(A,\E) = 0, A, = E a.e. since ^i(E) < r = M(A,). IfjLi(E\A,) = 0,
then A^ D E a.e. In all three cases we can deduce that

ess sup g(x) < ess sup g(x)
X\Af X\E

and therefore gR(t) = ess sup g(x). The proof that g^(t) = ess infg(x) is
X\A^ A^

the exact dual of the above.

LEMMA 3. — a) gR(t) is right continuous and g^(t) is left con-
tinuous.

b) Letting m denote Lebesgue measure on (0 , o°),

m({t\g\t) > a}) = g^(a) = m({t \g\t) > a))

for each a > 0.
c) g\t) = g^t) for all t,

and ^(0 = g*(t) for almost all t.

Proof. - The definitions of g^t) and g\t) and all the statements
of Lemma 3 are valid for an arbitrary measurable function g, on an
arbitrary measure space (see [3]), but for conciseness we shall give
the proof only for the case where the function g is carried by a
C.M.F. (A.) . This case is sufficient for all our subsequent

• 0<f<JLl(X)

applications.
a) Since g^^t) is non increasing,

lim g\t 4- l / n ) = sup-^^ -h l / n )
n-*'00 n>l

= sup (ess sup{g(x)\x E X\A^^})
/i ̂  i
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lim g\t + l A O = e s s s u p ( g ( x ) | x e G (X\A^, , , )1
M*-*00 \ M = = l n'l/f*^

= ess sup{^(x) | x G X\A^}

=^(0

and g^t) is consequently right continuous. The left continuity of
g^t) is proved in a similar manner :

^ ^(r - 1/^2) = ess inf^g(x)\x G G A,_^^ [ = g\t\

b) For each ^ < jn(X)

^0) = inf (ess sup \g(x)\\.
E^,n(E)<t \x^X\E I

But this infimum is actually attained (by the set E = A^). Conse-
quently

m({t\g\t) > a}) = inf {t \g^(t) < a}

= infS;i(E) | E E 2 , ess sup \g(x)\ <a j .v jcex\E )

Every measurable set E satisfying ess sup \g(x)\ <a must contain
x(EX\E

almost all of the set E^ = {x | | ̂ )| > a}, and E^ itself satisfies
this same inequality. Therefore

m ({t | ̂ (r) > a}) = /z(E^) = g^a).

The argument for ^L is slightly different :

m({t\g\t) > a}) == sup{M^LO) > a}

= sup (/x(E) | ess inf | g(x) | > a \.
[ JCCE )

Almost all of any set E satisfying ess inf | g(x)\ > a must be contained
JCGE

in E^, and ess inf \g(x) \ > a for each n. Consequently
^a^l/n

m({t\gL(t)>oi})=g^a)

for each a > 0.
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c) It is well known, and not hard to verify, t .at g*(0 is "unique"
in the sense that any function h (r) which is decreasing, right continuous
and satisfies m ({t \ h(t) > a}) = g^a) for all a > 0 must equal g*(t).
Thus we have shown that g^t) = g*(t), and furthermore ̂ (0 = g*(t)
except on the necessarily countable (or even empty) set of points
(t )°° where g^t) has jump discontinuities, because the functionn n—l

f(t) =^(0, for ^(^

= lim g\s) , for t = ^
^

is also right continuous with distribution function equal to g^.

Remark 1. - If (AJ is a C.M.F. carrying the function
• 0<f<M(X)

I/I where /G L(p , oo), then /**0) = t-1 f \f\ d^, for if E is anyJA^
set of measure t,

f 1 / 1 ^ = f 1 / 1 ^ + f . _ I/I ̂
JA^ JEOA^ JA^\E

and f I/I rijn = f I/I ̂  + f 1/| d^.
JE jEnA^ JE\A^

The sets A^\E and E\A^ both have measure t — /x(A^ 0 E). On the
former, \f(x)\ > f\t) a.e. whereas on the latter |/(x)| </*(r) a.e.
Thus f |/|rijLi > sup f \f\d^

^ ^(E)=f ^E

Remark 2. - From Remark 1, and the readily verified formula,
f^(t) = r1 f /*(5) rf5, it follows that f I / I ^ = f /*QO ^.

1/0 ^A^ ^0

In fact, by similar arguments, f |/F d^ == F (f*(s)Y ds for any
*'A^ »/0

exponent r > 0.

3. The decomposition L(p , oo)* = L(^', 1) © S^ ® S^.

LEMMA 1. - Given any I e L(p , oo)*, ^6?re ^x^^ a set E o/
o-/^^ measure, supporting I , that is, l(\^f) = l(f)forallfe L(p , 00).
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Proof. — We consider real vector spaces, the extension to the
complex case being obvious. Since f(x) < g(x) a.e. implies

^"L(p,»)<l^"L(p,-)

we can show in the usual way that / = t — l~, where /+ and l~
are positive continuous functionals (see e.g. [2]). Thus it suffices
to prove the lemma for / positive.

Given e > 0 there exists a positive function /i in L(p , oo) with
t ̂  /f*(r) < 1, such that /(/i) > I I / II (1 - e). The set

Hi ={x\f,(x)^0}

is a-finite. Let g be any function which vanishes on E^ with

ML(p,oo) == 1.

Then for each t > 0 :

(A + ̂ )**0) = sup r1 f |/i + g\ dfi
Ae£,jLt(A)=f "A

= sup r^f A ^ + f . \g\dui'\
AG£,M(A)=f [^AnEi ^A\EI J

< sup r1 [a/i**(a) + (t - a) g**(t - a)]
0<a<t

< sup r1 [a1-1^ + (t - a)1-1^] = 21/^-1^.
0<a<r

So ll/i +^IL(P,~) ^2^.

If^is positive, |/(/i + g)\ = /(/i) + l(g) < 21^ 11/11.

So | l(g)\ < 2'^ II/ II - /(/i) < II/ II (21/p - 1 + e),

and II/(XX\E. •)" = sup I/(XX\E,/)!/"/HL(P,~)1 o^/eL(p,°°) ; 1

< 11711(2'^ - 1 + e).

We repeat the same argument, choosing a function /^ supported on
X\Ei with llAlli^oo)^ 1 such that (/(/^l > II/(XX\EI - ) l l ( l -e) .
Let E^ be the support of f^. It follows that

II^XVE^.)"^^- 1 +e)2 1 1 / 1 1 .
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By further repetitions of the argument we can construct a sequence
of a-finite sets (E^^ such that

II/(XX\E,\E,...\E^^ .)" < (2^ - 1 + er 11/11.

If the initial choice of 6 was such that e < 2 — 21/p then E = G E^
M==l

is a a-finite set supporting /.

LEMMA 2. — // g is a measurable function, such that for every
simple function f,

\f fgd^\<K ll/ll^p.-) (*)
I X. I

where K is a constant independent off, then gEL(p ' , 1) where
\lp + \lp = 1.

Proof. - It is evident that | f f(Re(g))d^\ < K ll/ll^p.oo) for all
real valued simple functions /, and a similar inequality holds with
Im(^). Therefore it suffices to consider real valued functions g and /.

In the case X = (0 , °°) with Lebesgue measure, if g is a positive
decreasing function we have only to choose a sequence (/„) of simple
functions such that /^(Ot^"1^ = r1^"1 a.e. and we have imme-

/»00

diately that j ^-l/p g*(t) dt < K, as required. This argument adapts

to give a proof in general, with the technical help of a C.M.F. carrying
|^(x)|. But before the existence of such a C.M.F. can be assumed,
we must verify that g*(t) < oo and g^(t) < oo, for all t > 0.

For each set E with ^i(E) = t,

f^ \g\ dix = fsgn(g) XE g d[i < K \\sgn(g) XE "L(p,oo) by (*)

^K^.

From this it follows that t l / p g * * ( t ) < K for all t, and so g E L ( p ' , oo)
and, in particular, g*(t) and g^(t) are finite for all positive t.

Now let (A^) be a C.M.F. carrying \g\, and let

.(.) = ^^^ 2-^ x^,\^ (.).
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Then W = _S 2-^ X^,^ (0

and satisfies the inequality t-1^ < s*(t) < 21/p r ~l/p for all positive ^.
One can quickly see that (A^) carries both s(x) and s(x) \g(x)\.

s\t) g\t) = ess inf s(x) . ess inf \g(x)\ < ess inf s(x) \g(x)\ = (sg^t).
xGAy x^Af JCEA..

For each positive integer N, let

^)- f 2-^ XA^\A.^).
fc=-N 2 2K

11^ 11 Hp.i) < C f^tl"'1 g*(t) dt/t = C^V1/" ^(0 ̂

< C [ s*(t)g*(t) dt < C f"^)1- 0) A
^o ^o

= C F s(x) \g(x)\ d^x) = lim C f s^(x) \ g(x)\ d^x)
J x N-*°o ^X:

< CK lim sup II sgn (g). s^ \\^ ^ by (*)
N-+00 ^r1 )

<00.

Thus g^. L(p', 1) and the lemma is proved.

THEOREM. - Let No and N^ be seminorms on L(p , oo) defined by :

No(/)=limsup^/**(0
r-^o

N<^(/) = lim sup t1^ /**(r).
f-».oo

Let SQ be the subspace of L(p , °°)* of functionals I satisfying
!/(/)! ̂  C Ng(/) for some constant C, and analogously let S^ &^
the subspace of functionals "subordinate" to N^(-). Then

L(p,oo)* = L ( p ' , l ) ® S o e S , .

Proof. — Given / G L(p , oo)*, let E be a a-finite set supporting /.
Define the set function v(F) for all sets FES, by

KF)=/(XF)==/(XEnF)-

One can readily verify that v is a-additive and absolutely continuous
with respect to the a-finite measure ^ip.
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(^(F)- ^(EHF)) .

Thus ^ has a locally integrable Radon-Nikodym derivative g, which
vanishes off E, and for all simple functions / , / ( / ) = / / g dp..

^x
By Lemma 2 ^EL(p ' , 1). Furthermore, in view of the gene-

ralized Holder inequality | f fg dp\ < 11/11^ ̂  . 11̂  11̂  i of which a proof
is given in [6], the functional /^, l^(f) = j fg dp, belongs to L(p , oo)*.

In fact each / E L(p , oo)* uniquely defines such an I . Let /y be the
"singular" part of / , / , = / — I g . We have shown that

L ( p , o o ) * = L ( p ' , l ) © S ,

where S is the space of "singular" functionals on L(p , oo), which
vanish on the closure in L(p , oo) of the simple functions. In particular,
singular functionals vanish on all functions which are bounded and
supported on sets of finite measure. To show that S = So ® S^, write
any /, E S in the form /, = /o + /„, where /o(/) = /,(/X{;ci i/(x)i>a})»
and /„(/)= Is (^X{jcj|/(;c)|<a}) ^or some number a > 0. To show
that the definitions of /o and l^ are independent of the choice of a,
and that /o and /„ are linear, one has only to observe that the following
four functions are bounded and supported on sets of finite measure,
and thus annihilated by /y :

f ^-{x i i/(jc)| >a} — f X{jc i \f(x)\ >^} '

f ^-{x I |/(jc)l < a} ~ f X{jc I |/(;x:)l < ft} '

(/ + §) X{x I \f(x)+g(x)\ >a} ~ t X{x I \f(x)\ >a}~ 8 X{^ | \g(x)\ >a}»

(/ + g) \{x | \f(x)^g(x){ <a} ~ fX{x\ \f(x)\ <a}~ S X{x I |^(jc)l < a}»

for all /, g € L(p , oo) and all positive numbers a, j3. From this it
also follows that :

/o(/) = ̂  /,(/X{^ii/(x)i>a})

and U/) = I™ /// X{^| i^)| <a} ) •
a-*0

Consequently /o e ̂  since ^(^ ̂  11/11 su? t v l p /**(0 for every
0<t<€

e > 0. To see that /„ e S^, note that /„(/) = /„(/-) for all a > 0
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where f^x) = f(x) if \f(x)\ < a

= a if \f(x)\ > a

and sup t^P f^(t) < sup t1^ f^(t).
f>0 f>/*(a)

Either f^a) -> oo as a -> 0, or /^(O) < oo which means that ly(f^) ==; 0
for all a > 0. This completes the proof of the theorem.

Remark 1. - From the above it is clear that / G SQ annihilates
all bounded functions and that each / G S annihilates all functions

00

which vanish on the complement of a set of finite measure. Of course
if^(X)<oo, S^={0}.

Remark 2. — The results of this section remain true if X has
atoms.

4. Representation of the singular functionals.

Let the measurable subsets of X be partitioned into equivalence
classes by the relation A ^ B iff /x(A A B) = 0. Henceforth we will
use latin' capitals. A, B, C. . . to denote such equivalence classes as
well as sets, and ^i(A) to denote the jn measure of any and every
set in the class A. We shall not always be very pedantic in distinguishing
between a set and its equivalence class, but nor is there need to be
for our purposes.

DEFINITIONS. —
i) Let 2p be the metric space of "sets", (that is, equivalence

classes of sets) A, for which 0 < /i(A) < oo, equipped with the metric
r i ( A , B ) = ^ ( A A B ) .

ii) Let ^ be the unit ball of L°°(X , 2 , AO, and let $1 be the
subset of functions 0^$, for which |0(x)| = 1 ^-almost everywhere.

iii) Let Sl = 2,, x ^>. ^2 is a metric space with the metric,
ri((A , 0) , (B , ^)) = ^(A A B) + 110 - ̂ .

iv) Let C(Sl) be the Banach space of all bounded continuous
complex valued (or real valued) functions on Sl equipped with the
supremum norm.
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Each /GL(p,°°) defines a function in C(S2), which we may
also write unambigously as /. For each (A, 0) G Sl,

/(A,0) = Oi(A))1^-1 C f<t> d^
J\

The linear map of L(p ,00) into C(S2) given by f(x) -^/(A , 0), is
readily seen to be an isometry onto a closed subspace of C(n) :

sup | / (A,0) |= sup OLi(A))1^-1 f l / | ^ = sup^/**(0.
n Aesp •/A r>o

Since a metric space is completely regular, the Stone-Cech compac-
tification jSSI of n exists, and C(Sl) is isometric to C(j3n). From here
on the notation (A , 0) will be used in an extended sense to denote
points of jM2. We can now remark that each continuous linear func-
tional / on L(p , o°) may be represented, via a (non-unique) Hahn
Banach extension, as a bounded regular Borel measure X on jM2.

K/) = f /(A,0) rfX(A,0).
^n

This representation as it stands is very unwieldy as compared
to the straightforward and canonical representation obtained for at
least the L(p' , 1) part of L(p, oo)*. Nevertheless it is the starting
point for a characterisation of SQ and S^. Given any / in Sg or S^,
we shall see that the corresponding measure X on {S^l can be taken
to be concentrated on a very much simpler subset of j3ft, specifically
the closure, with respect to a suitable topology, of the "curve"
{(Af , 0) | 0 < t < ^i(X)}, where 0 is a fixed element of $, and
(A^) is a C.M.F. Each element / in So or S^ can thus be
represented in the form :

/(/)- f /(A,, 0)^(0 (1)
«^i

where v is a finitely additive bounded set function on the Borel
subsets of the open interval I = (0 , ^i(X)), such that for all g G L°°(I)

f g ( t ) dv(t) < const. lim ess sup \g(t)\ (2)
Ji M-»-°° t^(o,ifn)

if / G SQ, and alternatively
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f ^(0 dv(t) < const. lim ess sup \g(t)\ (3)
^I yi-*-0" feQi,<»)

i f /es^ .
We shall say "v concentrates at zero" to indicate that a finitely

additive set function v satisfies (2), and similarly (3) will be indicated
by saying "^ concentrates at infinity". Such "concentrating" set
functions must exist of course, as elements of L°°(I)* dominated
by the semi-norms on the right hand sides of (2) and (3).

It is obvious that an / of form (1) is in So or S^. A much
longer argument will be needed to show that each element of So
and of S^ can be thus represented. We shall show first (Theorem 1)
that the representation is valid for the functionals in a norm dense
subset of So and of S^. Thus every singular functional / is the limit
of a sequence (^)^=i

/.(/) = ̂ /(A^,, 0J A/,0).

We then show that the three sequences (^), (A^ ^) and (0^) have
subsequences which converge to limits v, (A^) and ^ in a sufficiently
strong manner to imply that

/(/)=jf/(A,,0)^.

This is done in three stages ; Theorem 2 (convergence of (^)),
Theorem 3 (convergence of (A^)) and Theorem 4 (convergence of
(0^)). It will be seen that v can always be taken to be a positive
set function with v(\) = II / II.

THEOREM 1. — Let /^S^, a = 0 or oo, such that for some
/GL(p,oo), l(f)= l j / 1 1 ll/ll^,oo).

Then there exists a positive finitely additive set function v € 1^(1)*
which concentrates at a, with Ml = v(l) == II/ II, such that

1(8) = f 8 (F, , 0) dv(t) for all g E L(p , oo),^i

where (F^)^j is a C.M.F. carrying |/| and <f>(x) == sgn(f(x)) E$.
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Proof. - Let us first deal with the case a = 0. Let / be a
functional in SQ such that for some/in L(p , oo), /(/) = 11/11 II/HL( oo).
It is convenient to suppose that 11/11= 11/11 L ( n o o ) = 1. As shown
above, we may write

l ( g ) = [ ^ ( A , 0 ) r f X ( A , 0 ) for all ^EL(p ,oo)J^

where X is a regular Borel measure on jM2 with total variation 1.
Since /(/) = 1, it follows that any Borel subset of j3ft disjoint from
{(A , 0) | |/(A , 0)| = 1} must have zero X-measure.

Let (F^)^j be a C.M.F. carrying the positive function |/0c)|.
Then the function / „ = = / . \p differs from / by a bounded function,
and so /(/„) = 1 for all n. Thus any Borel subset of jSft disjoint from

00

A = H {(A , 0) I |/^(A , 0)1 = 1} has zero X-measure.
n=l

Since S2 is dense in j3^, 'each "point" (B , ̂ ) in A is the limit
in j%2 of a net (B^ , ^^)^er of elements (B^ , ̂ ^) in Sl. Clearly
lim |/^(B , V/ )| = 1 for each integer n. We now show furthermore
7er • •
that lim jn(BJ = 0.

7^r 7

|/,(B^ , ̂ )i < (^(B^))1^-1 f i/j ̂  < (^(Bj)1/^-1 r 1 /1 ̂
"7 ^l/^

< (^(B^(F^))1^-1 ll/llLCp^-^B^)1^-1 1 1 / 1 1 L(p,-).

So 1 = lim inf |/,(B^ , ̂ )| < 11/11̂  oo)/(^ lim sup ̂ ))1-1^
7er ' ' v r ' ' 7er '

for all n. This is a contradiction if lim sup ^(B.J > 0. Henceforth
7er 7

we shall find it convenient to use the notation |7| = jn(B ) for each
7^r.

By definition of the net (B , V/ ) ,

g(B , ̂ ) = lim g(B- , i//J for all ^ E L(p , oo).
7er ' '

We now wish to deduce that :

g (B , i//) = lim ^(F,y , 0) for all g E L(p , oo), (4)
7er 7
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where each F is a member of the C.M.F. (F^)^i with

0<^)</x(B^),

and 0G$ is the function 0(x) == /(B , ^/) ̂  (/(x)). But before
verifying (4), let us show how it enables the proof of the theorem
to be completed for the case a == 0.

For all g E L(p , oo),

1^)1 <(var X) sup{ j^ (B , i//)| | (B, i / / )€EA}

< lim sup |^(F, , ^(7(T)))|
t^O

by (4) and the fact that lim ^(B/y) = 0 for each net (B^ , V^er in

ft tending to a point (B , V/) in A. /(^) is thus completely determined
by the function g ' on (0, ^i(X)), g ' ( t ) = ^(F^, 5^ (f(x))\ and, via a
Hahn Banach extension, we have / in the form (1), where v is a
bounded finitely additive measure with total variation v ( v , I) = 1.
Clearly v concentrates at zero.

We next show that v is positive. For every Borel subset E of I,
denote by v(y , E), the total variation of v on E (as in [5] Chapter III).

Let f(t) = /(F,, sgn (fW) = t1^-1 f |/| d^ for all t E I.
' r

Then 1 = / ( / )= f 7(t)dv(t)
J!

=^\f 70)^0)1 +Re!/ TV)^O)]
<|^(E)|cos0 + (1 -i;0/,E))

where v(E) = KE)| e10

< 1 + \v(E)\ (cos 0 -1 )

so 6 must be zero, and v(E) > 0 for each E.
It remains to prove (4). This will be done in four steps.

Step 1 : lim OX(F,^ A B^/H) = 0.
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Proof. - Since At(F^)) = |7| = ^i(B^), we have that

^nF^)=|7|-/z(B^\F^) = l7l-^(F^\B^)

and so, ^\F^) = ^(F^,\B^) = -^ ^(F|^| A B^).

Let us denote 0(7) = JLI(B^\F^(). Recalling Remark 1 of Section 2,

and the fact that (F^) carries |/|, we note that f 1/1^ < f I/I^JLI.
T,, . ^ ^TITherefore

f 1/1 ̂  < -^ ( f 1/1 ̂  + r 1/1 dn)J^ 2 V^ JF^I /

=1 (/ 1 / 1 ^ + f l/lrf/x)
2 ^nF^i ^uF^i /

< ̂  ^"L(p.oo) [(^(B^ n F,^ ))1-1^ + (̂  U F^| ))1-1^]

= ^ [(l7l - e(7))l-l/p + ( l7 l + e(7))l-l/p].

Consequently,

\7\l/p~l f 1/1^<T[(1 -^VlTl)1"1^ + ( 1 -^^/^l)1"1^].^B^ 2

For s G [0 , I], let w(s) be the function,

w(s) = -^ [(1 - ̂ )1-1^ + (1 + ^) l-lfP].

Then lim inf w(e(7)/l 7l) > lim inf 17!l/p-l f I/I ̂7er 7er J^

> lim l7l l / p- l | f / ^^ |== | / (B,V/) |=1 .7<=r | ̂  7 |

But the function w(s) is strictly decreasing for s G (0 , 1) and w(0) = 1.
Therefore lim e(7)/|7| = 0 and step 1 is proved. The above chain

7er
of inequalities also implies that :

lim M1/?-1 f |/|^= 1. (5)
-yer ^171
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Step 2. - lim g(B^ , \j/^) = lim g(F^ , i^) for all g G L(p,°°).

^•oo/ - |^, ̂ )-^(F^, ^)|

^'^/BAFii 1^1 ̂ ^^P/H]1"^ ^"L(p,~).

Therefore, using step 1, lim \g(B , ^ ) - g(F, , , ̂  )| = 0.,yer ' ' 171 7

.S'/ep 5. — For each 7 £ F there exists a positive number 77(7) < |7|,
such that

i) hjn ^(F.^i , ̂ ) = H^ ̂ (F,̂  , ̂ ^)

ii) lim sup (77(7))l/p /L(l7(7)) > (1 - l/p)/2.^er

T^oo/ - In view of (5) there exists 7g e F, such that 7 > 7,,,

implies that l7ll/p-' C \f\d^i>}- .
"'•l-yl 2

Let 17(7) = sup {5|0 < s < |7|, S'/P f^s) > (1 - l/p)/2} for each
7 > 7o. The set over which the supremum is taken is non-empty and
the supremum is positive, for if not, s11'' f^s) < (1 — \ / p ) / 2 for
5£(0,)7 | ] and by Remark 2.2,

iTl1^-1 f I/I^-M^-1/'17 '/1^)^^1

"l-yl "o 2

which is a contradiction. By the left continuity of/1-^),

(riWP f\'n(^) > (1 - 1 /p)/2 for all 7 > 7o,

and part ii) of step 3 is proved.
For each 7 > 7o,

|^[I/P-I j _ |y| ̂  = )^,| i/p-i / /'̂ /L^) ̂  4. r^ ̂  ̂ \
-^Tl V^O (̂T,) /

< 1 ^ 1 i/p-i if \f\ ̂  + (i - i/p)/2 r'̂ -i/p ̂
v (̂7) -nW /

< M17"-1 [(^^'-'^ + (l7l l- l /p-(T^(7) l- l /p)/2]

= [1 +(T7(7)/l7l)l-l/p]/2< 1.
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In view of (5), it follows that
lim (7?(7)/l7l) =1 . (6)7<=r

Now to show part i), let g E L(p , °°).

Î H ' ̂ ""^^Cy) ^ ^7)!

l7ll/p-1 f g^ - (r^))1^-1 f g^ dix
^F. . ^V / .'^l •'r'^)

^ | M17""1 - (ipW)17"-1 f 1 ^ 1 ̂ +
I '''I'yl

+ ^w)1^-1 r \g\dii
^W^nW

^(^W/lTl)1^-1- 1) ^"L(p.-) +

+ WT))1^-1^! - ̂ (T))1-1^ l^llL(p>»)

= "^"Kp,-) ((^W/lTl)1^1 - 1 + (iTlAKT)-!)1-1^).

By (6) this has generalized limit zero with respect to the directed
set r, and so part i) is proved.

Step 4. - lim g(F „( ̂  , V/ ) = lim ^(F / . , <j>) for all ^ £ L(p , =»)
'yer 'yer '

where 0(x) = /(B , V/) %«(7(̂ ).

Proof. — On the set F^), for each 7 ̂  7o' -^ ls non-zero and
therefore |0| = 1. For any number r > 1 let

H(7) = (T?(7))l/p-' /L(l7(7)) X 1 0 - ^.1' ̂
^(T)

H(7) < 2^1 (7?(7))l/p-l f I/I 10 - ^1 ,̂ since 4 - ^^ 11^ <2,
^(T)

< 2r-l(T^(7))l/p-l /' I/I 1 1 - ^01 ̂
'^(T)

< 2'-l(^^(7))l/p-l f I/I |1 - Re(>^0)| dii
^nM

+ 2r-l(r^(7))l/p-l f I/I |Im(^0)| ̂
*' F-,/..,^ ••Tl(7)

=Ai(7)+^(7).
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We shall show that both these terms have generalized limit zero with
respect to F.

|1 - Re(^0)| = 1 - Re(V^"0)

and I/I Re(^0) = Re(/(B , ^/) /^) on F,̂  .

In view of steps 1, 2, 3,

lim (7?(7))1^-1 f /^^=/(B, ^).
7er ^(7)

So lim (r^))1^-1 f Re(/(B, ^)/^J ̂  = 1.7^r ^F^) 7

Also, by much the same argument as in the proof of equation (5),

lim (T?^))1^-1 L I/I dii = 1,
T^F ^(<y)

and consequently lim ^(7) = 0. But further, since
rer

Re(/(B , ^/) /^) < | Re(/(B , ^) / ̂ )| < |/| ,

lim (^(r))1^-1 f |Re(7TB~^)/^)| ̂  = 1.
^er '^(7) 7

For the second term,

|Im(^0)|2 = |y/^0|2 - |Re(^0)|2 < 2(1 - |Re(^0)|).

WT))1^-1 f I/I |Im(^0)l dn
Fr?(7)

^C^))1^-1 (/^ l/l^)172 (/^ l/IIImC^)!2^)172

< f2(r?(7))l/p-l L I/I (1 - |Re(^0)l) dpV12

L "^(7) 7 J

which has generalized limit zero. Therefore lim H(7) = 0. For each
7<=r

7 > Jo, and each ^ G L(p , oo)
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1^(7)' ̂  ""^(^(T) '^1

< hCT)]1^-1/ 1 ^ 1 1 0 - ^ 1 dn
(̂7) 7

< h(7)i l/p~l r f î  ^T^ r r \(t)~ ̂ r ̂ l/r
1^(7) J ly^) J

r r,(7) ^ -ji/,'

< [^(T)]1^-1 [^ (^)r ^J [H(7)T?(7)/(r?(7))l/p /^(r))] l/r

< hCT)]1^-1^ [^(const.^-^^l1^ [2H(7)/(1 - \lp)}^

using ii) of step 3. If we choose r so that r ' < p , then the above
expression has generalized limit zero, and we have proved step 4,
demonstrated the validity of equation (4), and thus completed the
proof of the theorem for a = 0.

For a = oo the proof is almost the same. Steps 1 to 4 are valid
irrespective of whether lim l7l = 0 or not, so all that is needed

7<=r
is to show that in this case lim 77(7) = o°. Since l ^ - S , /(/„) = 1

-yer
for each n, where /„ = /• XX\F^-

I /^F^.^I^M^-1^ ^ 1/1^

^maxIM-^O]/^!)1-1^.

By step 2, lim inf I/^F^, , V/^)| = 1,

and so lim l 7 l = °° • Furthermore lim 17(7) = °°7er 7^r

also, since lim (7?(7)/l7l) = 1.7er

Remark 1. — In proving the theorems which follow, it will be
convenient to assume that the function 0 appearing in the conclusion
of Theorem 1 is in <I>i, that is, |0(Jc)| = 1 for almost all x G X. To
justify such an assumption we have only to redefine 0 on the set E
where f(x) = 0, and to check that the functional l(g) = j g ( F ^ , 0) dv
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is unchanged by this redefinition. Certainly / is unchanged by any
alterations to 0 on the set X\ U K. If ^(E H F.) > 0 for any t

f€EI

then / vanishes almost everywhere on X\F.. This can only happen
if / € SQ, and in this case we can change / on the set

{x | |/(x)| < 1} n r ̂  F.I

without changing the hypotheses or conclusions of Theorem 1. Thus
we can arrange that f(x) + 0 for all x G U F..

t(El

THEOREM 2. - Let I E S^, a == 0 or o°. Then I is the strong limit
of a sequence of functionals l^ E S^,

W=f,f(^n,t,^^

where v is a positive finitely additive set function on the Borel
subsets of I such that v(\) = ||/|| and v concentrates at a, and where
for each n, (A^)^j is a C.M.F. and 0^ G <i^.

Proof. - Bishop and Phelps [ 1 ] proved that the continuous linear
functionals which attain their norms on the unit ball of a Banach
space, are a norm dense subset of the dual space. Consequently, from
Theorem 1 and Remark 1, / = strong lim /„, where

W)=f AA,,,,0,)^

where each v^ is a positive finitely additive set function which concen-
trates at a, with ^(1) == l l / ^ l l , and where 0^ G<&p

For each n there exists a function f^ in the unit ball of L(p , °°)
for which T^(f^) = ||/J. We may of course assume that ||/J = ||/||
for all n, and let us again take 1 1 / 1 1 = 1 for convenience.

In order to prove the theorem, it will be shown that the sequence
(y^) tends to a limit v in a sufficiently strong topology.

For any g E L(p , °°) and any C.M.F. (A.)^i ,

g(A,) = g(\^ 1) = ^l/p-1 f g(x)d^x)
f

is a bounded continuous function on I.
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Let C(p , °°) denote the space of all such bounded continuous
functions on I obtained as g ranges over all of L(p , °°), and (A^)^i
ranges over all C.M.F.s. C(p, °°) will be normed by :

ll/llc(p,oo) = mf{ll^llL(p,oo) 1^(A,) =/0)

for all re I and some C.M.F. (A^)}.

LEMMA 2A. — Let f(t) E C(p , 00), and let (A^)^j be an arbitrary
C.M.F. Then for any positive e, there exists a function g E L(p , °°)
such that sup \g(\) - f(t)\ < e and \\g\\^p^ < ll/ l lc(p,oo).

Proof. — Take any function h €: L(p , °°) and C.M.F. (B^^j such
that

^)=^/P-I f 7,^.
JB^

Let (^(^))^=_oo be an increasing sequence of points in I and let

g(x)= S \(t{n^ \)-t(n))-1 f hdA
,,=-00 L "^(M+l^8?^) J

^^Af^+DVA^) (x)'

For any measurable set E,

^ |g |^<^/x(EnA^)\A^)

(/(M + 1)- t(n))-1 f \h\dii
B^(n+l)\BKn)

< i /.(En A^)\A^) /i(C^)-1 / I h\ dfJi
— oo n

where €„ C B^+I)\B^) is the set of measure /x(E 0 A^+^\A^))
00

in a C.M.F. carrying |A| XB^+I)\B^) • Then c = u c^ has the

same measure as E, and / \g\ d^ < / \h\ dfi. Consequently
^E "c

II^!IL(P,OO)< ll^llL(p,oo).
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Also by construction, g(A^) = f(t(n)) for all n. f(t) is uni-
formly continuous on all closed subintervals of I and ^""^^(A^) is
the linear interpolation of its values at the points t(n). Thus it is
clear that by choosing a sufficiently "dense" sequence (t(n)), one
can satisfy sup |^(A.) — f(t)\ < e , and the lemma is proved.

f(=I

(We remark that C(p , °°) is closed under pointwise multipli-
cation of functions, and that the C(p , °°) norm topology is strictly
finer than the supremum norm topology).

Let M(p , °°) be the dual space of C(p , °°). Each element p
of L°°(I)*, when restricted to C(p , °°), defines an element of M(p , °°),
with llpllM(p,oo) < v(p , I), since II/HL^I) < ll/llc(p,oo) for all/EC(p , -).
In particular each v^ is in M(p , °°).

We recall that there exists a function/„ in the unit ball of L(p , °°)
with /„(/„) = 1. In other words g^(t) = /^(A^^ , 0^) is in the unit ball

ofC(p , oo), and ̂  g^ = 1. It follows that II.^HM(P,OO) = ^(1) = 1.

It will be shown that (y^) is a Cauchy sequence in the M(p , °°)
norm and consequently it has a strong limit in M(p , °°). This limit
can also be thought of as a finitely additive set function, since the
sequence (^) must have a weak star convergent subsequence in L°°(I)*,
with limit v and the restriction of v to C(p , °°) must be the limit of
the sequence (^) in M(p , °°). It is clear that v must be a positive
set function with v(l) = IMlM(p,°o) = 1- v concentrates at a since each
v^ concentrates at a.

Before passing to the proof that (y^) is Cauchy in M(p , °°)

norm, we remark that if /„(/)= j / (A^^,0^)r i^ for each / in

L(p , °°), where v = lim v^, then
n-*"30

\W-W\ < ll/(A.,,,0.)llc(p,oo) ll^-^llM(p,oo)

< ll/IIup,-) ll^^llM(.,oo).

Thus (/„) and (/„) must both converge strongly to the same limit /
and Theorem 2 follows.

The following lemma immediately implies that (>„) is a Cauchy
sequence.
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LEMMA 2B. — Let /i andl^ be two singular functionals of form (1)

W- ^/(A,,0)^

/2(/)=^/(B,,^)rfp

where v and p are positive finitely additive set functions with
v(\) = p(I) == 1 = ||/i || = H ^ l l , and 0 and ^ are functions in $^.
Let e = ||/i — /^H, then \\v — pllM(p,oo) = 0(e), where 0(e) denotes any
function depending only on e, which tends to zero as e tends to zero.

Proof. — For each integer m, let

00

8n.W = S \, XA^,)\A,(«) W
n=—°°

where (X^)°°o, is a decreasing sequence, and (X/2))°°oo an increasing
sequence such that the step function s^, on I,

00

U )̂ = S ^ X( ,(„),,(„+!)) (/)

satisfies sup|^(/) - (1 - 1/p) /-1//'! < 1/w. Then the sequence (g^,(x))

converges uniformly p. almost everywhere to a limit g(x) which is
carried by (A,) with g*(t) = (1 - 1/p) r17" and ^(A,) = 1 for all /.
So 11^11 L(P,») = 1, and

f g(\)dv = f g(A,)dp = 1 .

e > l/i(^) -l^)\> 1 -]y g(B,,Wdp >\- r g(Q,) dp.

So 1 - e < f ^(B,) rip.
f i

Exactly as in step 1 of the proof of Theorem 1,

g(B,) < w(/x(B,\A,)/0

where w(s) = - t(l - 5)1-1/" + (1 + s)1-1/"] for s€ [0 , 1].
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Let P, ={tei |/x(B,\A,)/f > s}

Q, = I\P, ={/ei | ̂ (B,\A,)/r < s}

1 - e < f ^(B,) dp + C g(B,) dp < p(P,) w(s) + (1 - p(P,))
Jp. "Q,

since w(s) is a decreasing function.

Thus p(P,)<e(l -w(s))-1.

Since w'(0) = 0, and w"(s) is negative and bounded away from
zero on (0, 1), it follows that 1 - w(s) > Cs2 on [0 ,1 ] where C
is a positive constant depending only on p. Putting s = e1^ we obtain

p(P^) < C-1 v^T. (7)

We shall need a second estimate,

| ̂  /(B, , <t>) - /(B, , ^) dp | < 0(e) II/HL(P,O.) (8)

for all /£ L(p ,00). This is shown by methods similar to steps 3
and 4 of Theorem 1. For some r> p ' , let

H(0 = (1 - 1/p) f-' f \(t>-^\r dn«/A,nB,

= /l/p-1 g\t) [ \<f>- ^V dn
A,nB,

^ /I/P-I / g\^ — ^\r d^ ^ since (A,) carries^,
^nB,

^ y-i fi/p-i ̂  g\^-^\(Hji

< 2 ' - 1 1 1 ' " - 1 f ^|Re(l - V/^l ̂
"Bt

+ Z-1 f1/"-1 J' ^|Im(V/0)|c?/i

< 2r-l [^(B,) - g(B, , ReW))]

+2'-i^'/p-i ^ ^^y^ (^I/P-I ̂  g[Im(W]2 ^)l/2
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H(/) < 2'-1 Re(^(B,) - g(B, , V/0))

+ 2'-1(/1/P-1 ̂  2^[1 - ReW)] dfi)112 (as in step 4
' of Theorem 1).

^ H(t)dp < 2'--1 Re (V* ^(B,) - ̂ (B, , ̂ ) dp )

+ 2'- ( ̂  Re fe(B,) - ̂ (B, , 1^0)) dp)^2

by Schwarz' inequality.

|̂  ^(B,) -g(B, ,V/0)r fp |

< ]^(B,)rfp - l| + |l -J^ ^(B,, ^)rfp[

= | ̂  (^(B,) - g(A,)) dp + ] ̂  g(A,) dv - ^ ^(B, , ^)dp\

< 2p(P,i/4) + ̂  ^^ |^(A,) - ̂ (B,)| dp + | W) - l^)\

< 2C-' ^/7+(2e1/4)1-1^ + s = 0(e).

We have shown that

/ H(r) rfp = 0(c).

Then for any /€ L(p , 00) ,

I /•[^ /(B,, 0) - /(B, , V/) rfp

< j- (/i/p-i y ^i ^ _ ^i ̂  ̂  + o(e) ii/n^p,.)
Q^l/4 B^

^4^r l /p- l (^^'"^ (^ i^-^'^y'^p
+ 0(e)||/|| ̂ p,»)

^^^^^^'(r^——)'^
+ 0(e) 11/||,(,,.)
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where (F^) carries |/| ,

. f t^l^\(\f\sW' dsX"' (-^- 4- 2^f dp
"Q^i/4 L ^o J M — 1/p / •

+ 0(e) II/HL(P,-)

< 11^,4^ (/(l/'•+l/p-l)/ r^lPds) dp^"

[^^r
+ 0(e) II/HL(P,»)

= 0(e) 11/11 L(P,«) , since r' < p and || • ll^p..,)

and || • ||̂  „ are equivalent. Thus (8) is proved.

II P - rll M(P,«) = sup j \f h(t) dv - f h(t) dp I | h'e C(p , °°),

l|A|lc(p,~) < ll

<sup\\ff(\)dv-ff(A,)dp l/£L(p.°°), ||/HL(P,«) < l j ,

using Lemma 2 A. Now for each /£ L(p , °°),

| f f(\)dv- f/(A,)rfp|
I "i "i I

< I /i (/0) - /2 (/0)1 + | ̂  /(B, , ̂ 0) dp - ̂  /(B,) dp I

+]^/(B,)-/(A,)dp[.

The first term is dominated by e||/'||L(p,«,). The second equals :

1^ (/0) (B,, ^)dp - f (/0) (B, , <p)dp I < 0(e) II/HL(P,.) ,

from (8).



THE DUAL OF WEAK I/ 111

For the third,

| f /(B,) - /(A,) dp | < [ |/(B,) - /(A,)| dp
\j\ \ ^^i^

+^ |/(B,)-/(A,)|dp

^(le^-^^f^^^ 2C-1 v^ll/l!L(p,oo).

Therefore ||p - v\\^(p^) = °(6) and the Proof of Lemma 2B and thus
of Theorem 2, is complete.

THEOREM 3. — Every / G S^, a = 0 or °°, is the strong limit of
a sequence of functionals (/„) in S^

/„(/) = ̂  /(A, , 0^) ̂  /or ^// /E L(p , oo),

w/i^re (A^)^i ^ a CMF., i/ fl positive finitely additive set function
with v(l) = I I^HM(P,"O) = l l^l w^^ concentrates at a, a/iri (0^) ^ fl
sequence in $^.

Aw/ - As before we normalise to havejl^ I I = 1. By the preceding
theorem, / is the strong limit of a sequence (/„) where

W=jf/(A^,0,)^.

We shall construct a C.M.F. (A^p which is the "limit" of the
sequence {(A^)^}^ in the sense that

lim f ^(A^\A,)/^ A/ = 0. (9)
n-^00 *

From this the theorem will follow readily, since

\W-W\ < ll/llL(p,-) {, ^(A.^AA^/r]1-1^^,

as in step 2 of Theorem 1,

a \i/p'
< II/HUP,-) 2^(A^,\A,)/r ^)

and so lim \\l^ -T^\\ = 0.
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LEMMA 3A. - Let /„, v and (A,,^) be as above, then

f /^AA^)// dv = 0(||/7-7j|)

for each pair of integers n and m.

Proof. - Fix an n and let g be the positive function with
II^IL(P,<») = 1 carried by (A^),ei such that g(A^) = 1 for all t.
(as in the proof of Lemma 2B).

By the same reasoning as in the proof of Lemma 2B and in
step 1 of Theorem 1,

8^m,t) < w(^(A^\A^)/t)

and g^) - g(A^) > 1 - w(n(A^\A^)/t) > WA,., , \A^)//)2.

So [f^^\A^)/tdv^\C-1 f^g(A^)-g(A^^dv

<C-1 \^g(A^-g(A^,^)dv\

<c-1 1 1 T^-T^ 1 1 .

This proves the lemma.
In all that follows we will suppose that

6(^)=^(A^\A^)/r^

00

satisfies ^ e(n) < oo. It is clear from Lemma 3A, that this can
n==l

always be guaranteed, by passing if necessary to a subsequence of(/^).
Let us first consider the case / E SQ .
Roughly speaking, the idea for the construction of the "limit"

C.M.F. (A^)^j is to take a sequence of positive numbers (a(n))^^
which tends monotonically to zero, and thus partitions the part of I
near zero into disjoint intervals (a(n + 1) , a(n)] n = 1, 2. . . Then
we could define A^ = A^, for t G (a(n + l),a(n)] for each n. In
fact our definition will be almost this, but adjustments are necessary
to ensure that A^ C A^ whenever t < s. A certain condition will have
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to be imposed on the sequence (a(n))^^ to permit these adjustments.
Subsequently we shall show that if the convergence of a(n) to zero
is sufficiently rapid, then the corresponding C.M.F. (A^)^j satisfies (9).

Since v concentrates at 0, we can find, for each fixed n, a positive
sequence (a(k))^^ tending to zero such that

^A^)\A^,^)/^)<26(^)

for all k. Consequently, given any positive sequence (6(fc))^°=i tending
to zero we can find a strictly decreasing sequence (a(k))^^ with
0 < a(k) < b(k) for all k, such that :

^A^(^)\A^^^)/^+1)<2€W for all k. (10)

All positive sequences which decrease strictly with limit zero, and
satisfy (10) will be termed admissible.

Let (a(k))^^ (we shall also use the notation a(')) be an admissible
sequence. Fix k, and for each t E [a(k 4- 1) ,a(k)] define the set B^ :

^t = [A^A^A^(fc+i)\A^^+i)\C^)]

u r u (^1.^+1)^,^ i))iL m>k J

where (C^)^i)Wa(k) is a "rescaled C.M.F." on the set

A k,a(k+1 )\ A fc+1 ,a(fc+1) ?

that is :

0 CM(^+I) = ^ 5 ^MW = ^k,a(k+l)\\+l,a(k+l)

ii) 5 < t implies C^y C Cj^^

/ t — a(k + 1) \ / . . . ^
iii) ^.r) = ^(^ _ ̂  + i) / ^M^i)^^!^!)^

for all ^E[a(A; + 1), a(k)].

Clearly for 5 , t in [fl(A; + 1), a(k)}, s < r implies B, C B^.

^(fc) = Afc,a(fc) u[^^ (Am+l^w+D^m^w+D^J

and
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^a(k+l) = ^k,a(k+l)\^k,a(k+l)\^k+l,a(k+\)^

u r u ^w+l,fl(m+l)\^w,a(w+l)) |1 fit ^ k •*

= (^k,a(k+l) ^ ^fc+l,a(A:+l)) ^ ^k+l,a(k+l)^k,a(k+1))

U j U (A^+j^^^^\A^^^^_^) |
I. m >k J

= ^fc+l,a(^+l) ^ | .L J , (^w+l,a(w+l)\^w,a(w+l)) | •L W s^Ac+ 1 J

We can now extend the definition of B^ to all t, 0 < t < ^(1).
On each interval [^(A: 4- 1) , a(k)] we use the same formula as above,
and k ranges over all the positive integers. When t = a(m) is the common
end point of two adjacent intervals, [a(m + l ) , a (m) ] and

[a(m),a(m -1)],

there are two "rival" definitions for B^, but these definitions coincide,
in view of the consistent expressions obtained above for B^) and
^a(k+l)'

(B^)o^^(i) is almost a C.M.F. on ^a(iy ^e certainly have
B^ C B^ whenever s < t, but ^Li(B^) is not necessarily equal to t.
Instead we have only approximate equality as t tends to zero. To
show this, observe that because of the admissibility of a(-),

t - la(k + 1) e(k) < jL i (B , )< r 4- 2 - ^ e(m)a(m 4- 1)
m>k

for all t € [a(k 4- 1) , a(k)].
Thus, as t tends to zero (which corresponds to k tending to

infinity), lim ^(B^)/r = 1.
r-».o

It is clear that ^i(B^) is a continuous non decreasing function oft
on [0 , a(l)] (define BQ = 0) and so for each number t E [0 , JLI(B^I))]
there exists an s(t) G [0 , f l ( l ) ] such that ^i(B^) = t. Let us then
define the C.M.F. (A^i by A^ = B^) for all ^ E [0 ,/X(B^))]. For
^ > ^(B^I)) we may define A^ quite arbitrarily since we are working
with an / GS^, and a v which concentrates at zero. Similarly we may
consider (B^) defined for all t G I.
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We shall henceforth refer to (B^) as a quasi-C.M.F. generated
by a('\ and to (A^) as a C.M.F. generated by a(-). In fact for our
purposes it is easier to work with the quasi C.M.F.. If we can show
that there exists an admissible sequence a(-) which generates a quasi-
C.M.F. (B/) for which (9) holds :

lim f n(A^\B,)/t dv = 0

then we can readily deduce that the corresponding C.M.F. (A^)
generated by a(-) also satisfies (9) by noting that

JLI(A^\A,) < ̂ ,W + /x(B,\A,) < JLI(A^\B,) + |^(B,) - t\

and that f I JLI (B^) — t \ / t dv = 0 since the integrand tends to zero

as t tends to zero, and v concentrates at zero.
Let § be a positive number less than ^i(X), let Ig = (0, §],and

let P\Q denote the Stone-^ech compactification of I^. Clearly there
exists a Borel measure X supported on JSI^MQ, with total variation
v(\, j3Io) = v(v , I), such that

[ fdv^ C P[f]d\J, J \ /'i v i^ ' o
for every continuous bounded function / on Ig, where j8[/] is the
continuous extension of / to j3Io.

For each pair of real numbers a , &, with 0 < a < & let

V^0)=0 for r > 6

& - t
= ——— for a < t <b

b - a

= 1 for 0 < t < a.

Let n be an arbitrary fixed integer, and let a(-) be an admissible
sequence generating the quasi-C.M.F. (B^).

^(A^,\B,)/t< 1 for all t,

and if r G [^(A: + 1), a(k)} where /: > ^
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n(\^\B,)/t < n(A^\A^)/t + ̂ (A^\B,)/r

< ̂ (A^AAfc,,)// + M(A^,,\A^^I)\C^)//
k-i

< S ^A,^\A^,)// + 2eW
W=AZ

fc-1

= S V^^^^O)^(A^\A^^,)/^+26(A;).
W=M

Thus for all t C (0 , ^(^)j

Ai(A^\B^<^0;^(.))
where

/,(r;^))=minri, S V^,^^^(A^\A^^^ + 0(r)1 ,
L w>M J

0(t) being a continuous function on I^ which tends to zero as t tends
to zero, such that

6(t) > 2 e(k) on [a(k + 1), a(k)] for each k = 1, 2. . .

For each admissible sequence a ( ' ) and each integer /2, f ^ ( t ' , a ( ' ) ) is
continuous and bounded on IQ, and so j3[/^(^ ;a('))] is defined as
a continuous bounded function on j3Io.

We now regard the set D of admissible sequences a ( ' ) as a directed
set with the partial ordering a ( ' ) > &(•) iff a(k) < b(k) for all k.

LEMMA 3B. — Let n be an arbitrary fixed integer, then

Im JS [/„(/; a(.))]< S ^h(A^\A^,i,,)//]
W >M

pointwise on ^3Io\Io.

/>-oo/ - Let x be a point of ^IQ\IO. Then ;c is the limit of a
net (^)^p of points in I^ in the sense that I S [ f ] ( x ) = lim f(tj

^er '
for every bounded continuous function /on L.

First note that lim t. = 0 in the topology of [0 , 5] for if not7er •
a subnet of (^yXyer would converge to a point in (0 , §] which cannot
be x.
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Choose an arbitrary e > 0. For each integer m, there exists a
7 ,̂ E r such that for all 7 > 7^

^(A^\A^^ <WA^\A^)/^ (x) + 6/2-.

For all m > w define 7^ = sup 7^.
yi ̂  r< m

Define the subnet V^ of F to consist of the sequence 7^, 7^+i,
7n+2' • • • together with all elements 7 G r for which 7 > 7^ for all
m = ^2, ^2 4- 1, . . . Now construct an admissible sequence b(') with
0 < b(m) < min ^ for each m > ^2. Then for each 7 G r.,,

n<r<w-i •''

/«(^ ;&(•))< I v^i),^(^)^(A^\A^^+e(^)
m >w

< S ^[^(A^AA^i,,)//] (x) + e + 0(^).
m>yi

Passing to the limit with respect to the net F^,

Plf^'^('))] (X) < ^ ^(A^\A^^] (X)+ 6.
W>/1

For all c(-) and ri(-) e D with c ( ' ) > d(-), we have

/^;c(-))</^0;rf(-)) for all r e i ^ .

Thus lim P [ f ^ t , a ( ' ) ) ] ( x ) = inf (! [f^t ;a(-))] (;c)
a(-)eD aOGD

for each x Ej3Io\Io, and satisfies the required inequality.

LEMMA 3C. — Let n be an arbitrary fixed integer, and \ a Borel
measure induced an j8Io\Io by v in the manner described above. Then

lim f P[f^t,a(-))]d\<f ^ /? [^ ,\A^i ,)/t]d\.
a(.)eD ÎQ ^0 m>n

Proof. — First let us note that X must be a positive measure since
/ fd\ = / f dv > 0 for every positive bounded continuous

JftlQ J IQ

function / on jSIp.
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Let

F(x;^(.))=max|o^[/,(r;^))](x)- ^ ft ^(A^\A^,)/r] M:
v w>yi

F(x ; ^(-)) is an upper semi continuous function on j8Io\^o for each
a(') E D. a ( ' ) > b(') implies F(x ; a(')) < F(x ; &(•)), and by the previous
lemma, lim F ( ^ ; a ( - ) ) = 0 for all xEjSLAL.a(-)eD ° 0

For each e > 0, H { x | F(x ; a(.)) > e} = 0
a(.)GD

and, since each of the sets {x \ F(x ; a(-)) > e} is compact, there
exists a finite collection of admissible sequences

^i('), a ^ ( ' ) . . . ^(-), such that

r^ {x | F(x ; ^(-)) > e} = 0

Thus for all a ( ' ) > sup ^(-), 0 < P(x ; a(-)) < e for all ^ G jSI^I^, and

F(^ ;^(')) converges to zero uniformly. This argument is of course
nothing other than Dints theorem. The proof of the lemma now
follows obviously.

We are now ready to construct an admissible sequence b(') which
generates a quasi C.M.F. (B^) satisfying (9). For each n we can find,
using Lemma 3C, an admissible sequence a ^ ( ' ) such that

^ ^/.0;^(-))]^<r S WVAA^)/^]rfX+ \ln.
" 0 m^ YI

Let b ( ' ) be an admissible sequence such that

0 < b(m) < min a^{m) for each m.
1 < M < W

Observe that f^(t ,a ( ' ) ) depends only on the members of the sequence
a(m) with m > n, and that b(m) < a^(m) for all m > n. Thus
/^0;6(-))</^0;^(-)) for each n and all t E 1^.

Let (B^) be the quasi C.M.F. generated by b('). Then, for each n,
as shown earlier, ^(A^\B,)/t </^0 ; 6(')) for rE(0,6( /?)] . Conse-
quently,
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f /x(A^\B,)/? ̂  < f /„(/; a«(-)) ̂
"I "'O

=^ ^[/^;aJ.))]rfX

< S ^ WA^\A^)//]rfX+l/«
w >« °

= I j[ ^^\^^)ltdv + \ln
m>n

= ^ e(w) + 1/n,
m>n

which tends to zero as n tends to infinity. Thus (B^) satisfies (9)
and the proof of Theorem 3 is complete for the case / ̂  S^.

We now turn to the proof for /E S^.
A sequence (a(/0)^ of positive numbers will be called °°-

admissible if it is strictly increasing with limit + oo and

1 Ac-l

lim —— S ^(m) == 0 (11)
k— a(k) ^

^k^^k-i^W) < 2e(^- 1) for each k. (12)

For ^ G [a(k) , a(k + 1)] define :

B,=[A^,\(A,^\A,_,^\C^)]ur U (A^_^^\A^^)1
Lw^fc -J

where (C^\^^^ is a rescaled C.M.F. on A^^\A^_i^
which means that :

x) -MW == ^)) ^k,a(k+l) = ^k,a(k)\^k-l,a(k)

ii) 5 < t implies that C^ C C^

iii) ^^^^ = ^(k '+ l)0^)) ^^^w^^-^)^
As before we have monotonicity of B^ on the interval [a(/;), a(k + 1)]

^a(fc+l) == ̂ ,a(^+l) u I u ^m-l,fl(w)\^w.a(w)) I
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and

B.W = [A^) U (A^^ U (X\A^))] U (A^.^\A^)

UL m^-/^"1'0^^^^!

= Ak-l,a(k) u [^^ <A^^\A^^)1.

The consistency of the expressions for B^ and B^^) permits
us to define B^ for all t G [a(l), oo).

For r E [^), a(k + 1)] we have, using the °°-admissibility ofa(-),

^ - 2a(k) e(k - 1) < /,(B,) < t + 2 ^ ^(m) e(m - 1).
w<fc

In view of (11) it follows that lim /x(B,)/^ = 1.
f-».oo

From here the proof is an obvious analogue of that for / E S^.
We pass to a Borel measure X on j3[ 1 , oo)\[ i ^ oo). The role of V (t)
is played by A^ (t) = 1 - V^ ^ (r), and the analogue of the function
0(t) will be a continuous function 6^(t) which tends to zero as t
tends to infinity and for which

inf 6^(t) > 2 e ( k - 1)
a(k)<l^a(k+l)

for each integer k.

THEOREM 4. - Each /E S^, a = 0 or ^>, has the form

/ ( / )=^ / (A, ,0 )^

wA^ (A^i is a C.M.F. (t>e^^ and v is a positive finitely additive
set function concentrating at a, with \\v\\^(p^ = v(\) = | |/[|.

Proof. - Much of the proof proceeds along similar lines to that
of Theorem 3.

Our starting point is, naturally enough, the sequence (l^=i of
Theorem 3, which converges strongly to /,

W = ̂  f(\,d>^dy.
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We shall construct a function 0 G $ which is a "limit" of the sequence
(0^)^°=i in the sense that

^ J . ^ J ^ l^-^^l ^=0 d3)^t^L, ̂ n-^^Y" d^=0

where, as in the proofs of Theorems 1 and 2, r is a fixed number in
(1 , °°) such that / < p.

Given such a 0, we have, for each /£ L(p , oo)

W- ff(\,<f>)dv ^/p17"-1^ I/I 10»- 01^1^

^ [r-l^ ̂ n-^^Y [^-'^ lyr'^]17' ̂  .
The second factor in the integrand is bounded uniformly for all t E I
since r <p and

f \f\rl rf^< f[f^s)Y' ds
v ^t ^Q

<(ll/ll^oo/ (1 - r / p ) - 1 t ^ ' / P .

Thus from (13) it will follow that / = lim /„ must have the desired
form

W- J^/(A,,0)^.

LEMMA 4A. - Let the sequence of functionals (1^=^ and the
number r be as defined above. Then for each pair of integers m and n,

f,\t1 f^ l0.-0^r^^l/r^=o(||/,-^||).
Proof. - Using a function g carried by (A^i with g(A^) = 1

for each t we proceed almost exactly as for the estimating of H(t) and
/ H(r) dp (proof of (8) in Lemma 2B) and show that/,v I

^ [ t l L, 10" -^1^]^= 0(11^-U).

(The argument is in fact even simpler than that for (8) since we may
take p = v and (A^i = (B,)^,).
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We have only to apply Holder's inequality and the proof is
complete.

Let e(n) = ^ [r-1 f^ |0^- 0^ dJ17' dp.

00

Lemma 4A allows us to assume that ^ e(n) < oo, by passing if
y»=i

necessary to a subsequence of (/^^°=i.

CASE 1 : /ESo .

For each strictly decreasing sequence (a(k))^^ we define 0 to
be r/ze function generated by a(') if

00

^= ̂  ^^(^A^,)-

A sequence a(-) tending strictly monotonically to zero will be
termed ^'admissible if

i) a ( l ) < l , ii) a(k+ I ) < a(k)2 for each k.
Let a(-) be ^-admissible, and suppose it generates <f>. Then for

te[a(k + 1), a(k)] with k > n,

[r1 ^ ̂ -^d^1"

< [/-1 j( 1^ -0^ ̂ j1" + [r1 /^ 10,, -0^1^

- ^ r ^ /A i0«-0i^^L ""a^) J

^2 i [r1 f 10,-0^ll^/x^l/r

m=n L » -I

+ 2[a(k + 2)/a(k+ I)]17''

< 2 1 V^^_,)(/) [r1 / |0, -0^1- ^l1^
W=AI L t J

+ 2 [ a ( y f c + I)]17'

where V^(r) is as defined for Theorem 3.
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Thus for all t E (0 , o(^)], [ r1 ^ |0^ - 0|' d^il l / r is dominated

by the continuous bounded function :

/2,0;^))=minJ2,2 ^ V.(m),^-i)W
v m> n

[/-1 ^ l^-^r^+^j.

As in theorem 3 we let X be the Borel measure on j8Io\Io induced by
v and by analogous reasoning to Lemmas 3B, 3C, 3D etc. we construct
a ^admissible sequence b(-) such that for each n

IS [h^t ;&(•))] d\L
< 2 S f P\r1 f ^^.J^l^x+i/^.

m>n ^0 L t J

Thus, if 0 is the function generated by b ( ' )

f\^ f l^^r^l17^^ ^ e(m)^\ln
I L ^ J m>n

and (13) follows.

CASE 2 : /ES^ .

A strictly increasing sequence (a(k))^^ generates the function 0,
where

00

^ ^a^+lA^fc)'

Such a sequence <2(-) is ^-^admissible if

i) ^(1) > 1, and ii) a(k + 1) > ^(A:)2 for each A:.

Let 0 be the function generated by the ^-oo-admissible sequence fl(-).
Then for t C [^), a(k + 1)] with ^ > n,
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[i-1^ ^ - ^ d ^ "

<[t~1 f^ I^^J^p+jr1 ^ ^ -0,_j^Jl/r

+k^ i0,,-<^rL "^(fc-i) J
t-l F

< 2 S r1 ̂  10^ - ̂ , i'- rfjl/r + 2 [a^ - DAW]1/'-
m=n \. t J

< 2 ^1 A ,̂),̂ ,) (/) [ r1 f 10^ - ̂ \rdp\l'r+2[a(kTl'2r

m=n L ^t J

where A^(t) is defined as for Theorem 3.

Let BJit) be a continuous bounded function on (0 , °°) such
that lim <Ur) = 0, and inf O^t) > 2 [flW]-1/2" for each

r-^ a(k)<t^a(k+l)

integer k. Then for all t G [^(^2) , oo)

[r1 ^ |0 , -0^^^ 1 / r <min 2,2 ^ A^^^)O)
L "1 J m>n

[rl f^ ^rn-^^dy}^ ^Q^t)\.

From this (13) follows in much the same way as before. This completes
the proof of Theorem 4.

Remark 2. - As it stands our characterisation of the elements
of SQ and S^, is not canonical, in the sense that one can have

f /(A,, 0) dv = f /(B,, ^) dp

for all/ G L(p , °°) where p ^ v, 0 ^= V/ and (A^)^( =^ (B^)^i. However
each functional /, /(/) = / /(A. , 0) dv can be seen to be in one

J!

to one correspondence with a triple (M, [(A^)^J , [0]) where the
square brackets denote equivalence classes in the sets of positive
bounded finitely additive set functionals, of C.M.F. s, and of functions
in 4>^ respectively.



THE DUAL OF WEAK Lp 125

These three classes are defined by the equivalence relations :

i) p - v iff ||p -^||^^= 0

ii) (A,)^i - (B,),^ iff f ̂  AB,)/r dv = 0

for any v G [^], (and thus for every ^ E [i/])

iii) 0 - ^ iff f r-1 f |0 - V/F ̂ | l/r dv = 0'j\ \ <\. "f \f~1 f 1 0 - ^r^lJI L J^ J
for any v E [v\ and any (A^)E[(A^)] (and thus for every v^[v}
and every (A^) E [(A^)].

An apparent shortcoming of our characterisation is that there
seems to be no way in which it reflects the linear structure of S^.

Let /,.(/) = f f(A^, , ^.) dv^ j = 1, 2, 3 with l^ = ^ + / i . There
does not seem to be a "recipe" for defining ^3 , (A3 ^) and ^3 (or
their equivalence classes) directly in terms of^ , v^, (A^ ^),, (A^ y), 0i
and 02-

Remark 3. — From Theorem 4 one can see that every functional
in S^ attains its norm on the unit ball of L(p, oo). Let F^ be the
quotient space of L(p, °°) defined by the equivalence relation

f-g iff N^(/-^)=0

where NQ and N^ are the semi norms which define SQ and S^
(section 3 ). Then S^ is the dual of F^ and each functional in S^
attains its norm on the unit ball of F^. Applying a theorem of
James [7], we see that F^ must be reflexive. Let F^ ^ denote the
direct sum of k copies of F^, and S^ ^ the direct sum of k copies
of S^, then for each n the (In — 1) th dual of L(p , oo) is

L ( p \ l ) ® S o , e S ^

and the 2^th dual is Up , °°) e F^^ ® F^, ^ .
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