La K-aire selon M. Gromov
Séminaire de théorie spectrale et géométrie, Tome 21 (2002-2003), pp. 9-35.
@article{TSG_2002-2003__21__9_0,
     author = {Davaux, H\'el\`ene},
     title = {La $K$-aire selon {M.} {Gromov}},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {9--35},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     year = {2002-2003},
     mrnumber = {2052821},
     zbl = {1067.53030},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_2002-2003__21__9_0/}
}
TY  - JOUR
AU  - Davaux, Hélène
TI  - La $K$-aire selon M. Gromov
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2002-2003
SP  - 9
EP  - 35
VL  - 21
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_2002-2003__21__9_0/
LA  - fr
ID  - TSG_2002-2003__21__9_0
ER  - 
%0 Journal Article
%A Davaux, Hélène
%T La $K$-aire selon M. Gromov
%J Séminaire de théorie spectrale et géométrie
%D 2002-2003
%P 9-35
%V 21
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_2002-2003__21__9_0/
%G fr
%F TSG_2002-2003__21__9_0
Davaux, Hélène. La $K$-aire selon M. Gromov. Séminaire de théorie spectrale et géométrie, Tome 21 (2002-2003), pp. 9-35. http://www.numdam.org/item/TSG_2002-2003__21__9_0/

[Bau91] H. Baum, An upper bound for the first eigenvalue of the Dirac oprator on compact spin manifold. Math. Z., 206-3 ( 1991), 409-422. | MR | Zbl

[BK78] J.-P. Bourguignon et H. Karcher, Curvature operators: pinching estimates and geometrie examples. Ann. Sci. École Norm. Sup. (4), 11-1 ( 1978), 71-92. | Numdam | MR | Zbl

[BK81] R. Buser et H. Karcher, Gromov's almost flat manifolds. Société Mathématique de France, Paris, 1981. | Numdam | Zbl

[Dav02] H. Davaux, K-aire et courbure scalaire des variétés riemanniennes. Thèse de l'Université Montpellier II, 2002.

[GHL90] S. Gallot, D. Hulin et J. Lafontaine, Riemannian geometry. Springer-Verlag, Berlin, second edition, 1990. | MR | Zbl

[GL80a] M. Gromov et H. Blaine Lawson, The classification of simply connected manifolds of positive, scalar curvature. Ann. of Math. (2), 11-3 ( 1980), 423-434. | MR | Zbl

[GL80b] M. Gromov et H. Blaine Lawson, Spin and scalar curvature in the presence of a fundamental group, J.Ann. of Math. (2), 111-2 ( 1980), 209-230. | MR | Zbl

[GL83] M. Gromov et H. Blaine Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58 ( 1984), 83-196. | Numdam | MR | Zbl

[Gro81 ] M. Gromov, Structures métriques pour les variétés riemanniennes. CEDIC, Paris, 1981. | MR | Zbl

[Gro96] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In Functional analysis on the eve of the 21 st century, Vol. II (New Brunswick, NJ, 1993), pages 1-213. Birkhäuser Boston, MA, 1996. | MR | Zbl

[Hus94] D. Husemoller, Fibre bundies, Springer-Verlag, New York, third edition, 1994. | MR | Zbl

[Kar77] H. Karcher, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math., 30 5 ( 1977), 509-541 | MR | Zbl

[LM89] H. Blaine Lawson et M.-L. Michelsohn, Spin geometry, Princeton University Press, Princeton, NJ, 1989. | MR | Zbl

[Ste57] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1957. | MR | Zbl