Curvature operators : pinching estimates and geometric examples
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 11 (1978) no. 1, pp. 71-92.
@article{ASENS_1978_4_11_1_71_0,
     author = {Bourguignon, Jean-Pierre and Karcher, Hermann},
     title = {Curvature operators : pinching estimates and geometric examples},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {71--92},
     publisher = {Elsevier},
     volume = {Ser. 4, 11},
     number = {1},
     year = {1978},
     doi = {10.24033/asens.1340},
     mrnumber = {58 #12829},
     zbl = {0386.53031},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.1340/}
}
TY  - JOUR
AU  - Bourguignon, Jean-Pierre
AU  - Karcher, Hermann
TI  - Curvature operators : pinching estimates and geometric examples
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1978
SP  - 71
EP  - 92
VL  - 11
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.24033/asens.1340/
DO  - 10.24033/asens.1340
LA  - en
ID  - ASENS_1978_4_11_1_71_0
ER  - 
%0 Journal Article
%A Bourguignon, Jean-Pierre
%A Karcher, Hermann
%T Curvature operators : pinching estimates and geometric examples
%J Annales scientifiques de l'École Normale Supérieure
%D 1978
%P 71-92
%V 11
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.24033/asens.1340/
%R 10.24033/asens.1340
%G en
%F ASENS_1978_4_11_1_71_0
Bourguignon, Jean-Pierre; Karcher, Hermann. Curvature operators : pinching estimates and geometric examples. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 11 (1978) no. 1, pp. 71-92. doi : 10.24033/asens.1340. http://www.numdam.org/articles/10.24033/asens.1340/

[1] A. Besse, Manifolds all of whose Geodesics are Closed, Erg. der Math., Springer, 1978. | MR | Zbl

[2] J. P. Bourguignon, Sur les formes harmoniques du type de la courbure (C. R. Acad. Sc., Paris, t. 286, 1978, pp. 337-341). | MR | Zbl

[3] E. Calabi et E. Vesentini, On Compact Locally Symmetric Kähler Manifolds (Ann. of Math., Vol. 71, 1960, pp. 472-507). | MR | Zbl

[4] S. Gallot et D. Meyer, Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne (J. Math. pures et appl., T. 54, 1975, pp. 259-284). | MR | Zbl

[5] R. Geroch, Positive Sectional Curvature does not Imply Positive Gauss-Bonnet Integrand (Proc. A.M.S., Vol. 54, 1976, pp. 267-270). | MR | Zbl

[6] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. | MR | Zbl

[7] G. Jensen, Embeddings of Stiefel Manifolds into Grassmannians (Duke Math. J., Vol. 42, 1975, pp. 397-407). | MR | Zbl

[8] H. Karcher, Pinching implies Strong Pinching (Comment. Math. Helv., Vol. 46, 1971, pp. 124-126). | MR | Zbl

[9] T. Kato, Perturbation Theory for Linear Operators, Grund. der math. Wiss., Springer, 1966. | MR | Zbl

[10] P. Klembeck, On Geroch's Counterexample to the Algebraic Hopf Conjecture (Proc. A.M.S., Vol. 59, 1976, pp. 334-336). | MR | Zbl

[11] N. Koiso, Critical Metrics and Non-Deformability of Certain Riemannian Structures (Preprint, 1977).

[12] R. S. Kulkarni, On the Bianchi Identities (Math. Ann., Vol. 199, 1972, pp. 175-204). | MR | Zbl

[13] H. Maillot, Sur l'opérateur de courbure d'une variété riemannienne (Thèse de 3e cycle, Université Claude-Bernard, Lyon, 1974).

[14] A. Polombo, Nombres caractéristiques d'une variété riemannienne (Thèse de 3e cycle, Université Paris-VII, 1976).

[15] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, 1964. | MR | Zbl

[16] H. Weyl, Classical Groups, Princeton University Press, Princeton, 1939. | JFM

  • Minemyer, Barry Curvature operators on Kähler manifolds, Advances in Mathematics, Volume 464 (2025), p. 110142 | DOI:10.1016/j.aim.2025.110142
  • Bettiol, Renato G.; Goodman, McFeely Jackson Curvature operators and rational cobordism, Advances in Mathematics, Volume 458 (2024), p. 109995 | DOI:10.1016/j.aim.2024.109995
  • Dickinson, William; Kerr, Megan M. Correction: The geometry of compact homogeneous spaces with two isotropy summands, Annals of Global Analysis and Geometry, Volume 66 (2024) no. 2 | DOI:10.1007/s10455-024-09966-9
  • Dai, Zhi-Lin; Fu, Hai-Ping Einstein manifolds and curvature operator of the second kind, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 2 | DOI:10.1007/s00526-023-02650-z
  • Li, Xiaolong Manifolds with nonnegative curvature operator of the second kind, Communications in Contemporary Mathematics, Volume 26 (2024) no. 03 | DOI:10.1142/s0219199723500037
  • Arkhipova, N. A.; Stepanov, S. E. Two kernel vanishing theorems and an estimation theorem for the smallest eigenvalue of the Hod­ge — de Rham Laplacian, Differential Geometry of Manifolds of Figures (2024) no. 55(2), p. 37 | DOI:10.5922/0321-4796-2024-55-2-2
  • CEKIĆ, MIHAJLO; LEFEUVRE, THIBAULT; MOROIANU, ANDREI; SEMMELMANN, UWE On the ergodicity of unitary frame flows on Kähler manifolds, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 8, p. 2143 | DOI:10.1017/etds.2023.72
  • Iliashenko, Anton Betti numbers of nearly G2 and nearly Kähler 6-manifolds with Weyl curvature bounds, Geometriae Dedicata, Volume 218 (2024) no. 3 | DOI:10.1007/s10711-024-00920-4
  • Cekić, Mihajlo; Lefeuvre, Thibault; Moroianu, Andrei; Semmelmann, Uwe On the ergodicity of the frame flow on even-dimensional manifolds, Inventiones mathematicae, Volume 238 (2024) no. 3, p. 1067 | DOI:10.1007/s00222-024-01297-7
  • Dai, Zhi-Lin; Fu, Hai-Ping; Yang, Deng-Yun Manifolds with harmonic Weyl tensor and nonnegative curvature operator of the second kind, Journal of Geometry and Physics, Volume 195 (2024), p. 105040 | DOI:10.1016/j.geomphys.2023.105040
  • Mikeš, Josef; Stepanov, Sergey; Tsyganok, Irina The Lichnerowicz-Type Laplacians: Vanishing Theorems for Their Kernels and Estimate Theorems for Their Smallest Eigenvalues, Mathematics, Volume 12 (2024) no. 24, p. 3936 | DOI:10.3390/math12243936
  • Li, Xiaolong Product manifolds and the curvature operator of the second kind, Pacific Journal of Mathematics, Volume 332 (2024) no. 1, p. 167 | DOI:10.2140/pjm.2024.332.167
  • Fluck, Harry; Li, Xiaolong The Curvature Operator of the Second Kind in Dimension Three, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01639-0
  • Nienhaus, Jan; Petersen, Peter; Wink, Matthias Betti numbers and the curvature operator of the second kind, Journal of the London Mathematical Society, Volume 108 (2023) no. 4, p. 1642 | DOI:10.1112/jlms.12790
  • Li, Xiaolong Kähler manifolds and the curvature operator of the second kind, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03263-0
  • Li, Xiaolong Kähler surfaces with six-positive curvature operator of the second kind, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 11, p. 4909 | DOI:10.1090/proc/16363
  • Sbiti, Sammy On the Ricci flow of homogeneous metrics on spheres, Annals of Global Analysis and Geometry, Volume 61 (2022) no. 3, p. 499 | DOI:10.1007/s10455-021-09812-2
  • Bettiol, Renato G.; Lauret, Emilio A.; Piccione, Paolo Full Laplace spectrum of distance spheres in symmetric spaces of rank one, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 5, p. 1683 | DOI:10.1112/blms.12650
  • Boulanger, A.; Courtois, G. A Cheeger-like inequality for coexact 1-forms, Duke Mathematical Journal, Volume 171 (2022) no. 18 | DOI:10.1215/00127094-2022-0028
  • Chemtov, Max; Karigiannis, Spiro Observations about the Lie algebra g2⊂so(7), associative 3-planes, and so(4) subalgebras, Expositiones Mathematicae, Volume 40 (2022) no. 4, p. 845 | DOI:10.1016/j.exmath.2022.10.004
  • Li, Xiaolong Manifolds with 412-Positive Curvature Operator of the Second Kind, The Journal of Geometric Analysis, Volume 32 (2022) no. 11 | DOI:10.1007/s12220-022-01033-8
  • Mikeš, Josef; Rovenski, Vladimir; Stepanov, Sergey; Tsyganok, Irina Application of the Generalized Bochner Technique to the Study of Conformally Flat Riemannian Manifolds, Mathematics, Volume 9 (2021) no. 9, p. 927 | DOI:10.3390/math9090927
  • Mikeš, Josef; Rovenski, Vladimir; Stepanov, Sergey E. An example of Lichnerowicz-type Laplacian, Annals of Global Analysis and Geometry, Volume 58 (2020) no. 1, p. 19 | DOI:10.1007/s10455-020-09714-9
  • Stepanov, S. E.; Tsyganok, I. I. On the Tachibana numbers of closed manifolds with pinched negative sectional curvature, Differential Geometry of Manifolds of Figures (2020) no. 51, p. 116 | DOI:10.5922/0321-4796-2020-51-13
  • Liu, Huaifu; Mo, Xiaohuan; Zhang, Hongzhen Finsler warped product metrics with special Riemannian curvature properties, Science China Mathematics, Volume 63 (2020) no. 7, p. 1391 | DOI:10.1007/s11425-018-9422-4
  • Shandra, Igor G.; Stepanov, Sergey E.; Mikeš, Josef On higher-order Codazzi tensors on complete Riemannian manifolds, Annals of Global Analysis and Geometry, Volume 56 (2019) no. 3, p. 429 | DOI:10.1007/s10455-019-09673-w
  • Rovenski, Vladimir; Stepanov, Sergey; Tsyganok, Irina On the Betti and Tachibana Numbers of Compact Einstein Manifolds, Mathematics, Volume 7 (2019) no. 12, p. 1210 | DOI:10.3390/math7121210
  • Akutagawa, Kazuo; Endo, Hisaaki; Seshadri, Harish A gap theorem for positive Einstein metrics on the four-sphere, Mathematische Annalen, Volume 373 (2019) no. 3-4, p. 1329 | DOI:10.1007/s00208-018-1749-x
  • Cruz, Cícero Tiarlos; de Lima, Levi Lopes; Montenegro, José Fabio Deforming the Scalar Curvature of the De Sitter–Schwarzschild Space, The Journal of Geometric Analysis, Volume 28 (2018) no. 1, p. 473 | DOI:10.1007/s12220-017-9829-9
  • Feehan, Paul M.N. Energy gap for Yang–Mills connections, II: Arbitrary closed Riemannian manifolds, Advances in Mathematics, Volume 312 (2017), p. 547 | DOI:10.1016/j.aim.2017.03.023
  • Jost, Jürgen Chapter 9 Harmonic Maps Between Riemannian Manifolds, Riemannian Geometry and Geometric Analysis (2017), p. 489 | DOI:10.1007/978-3-319-61860-9_10
  • Herrmann, Martin Almost nonnegative curvature operator and cohomology rings, Frontiers of Mathematics in China, Volume 11 (2016) no. 5, p. 1259 | DOI:10.1007/s11464-016-0569-0
  • Catino, Giovanni; Mastrolia, Paolo; Monticelli, Dario Classification of expanding and steady Ricci solitons with integral curvature decay, Geometry Topology, Volume 20 (2016) no. 5, p. 2665 | DOI:10.2140/gt.2016.20.2665
  • Stepanov, S E; Mikeš, J The Hodge-de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign, Izvestiya: Mathematics, Volume 79 (2015) no. 2, p. 375 | DOI:10.1070/im2015v079n02abeh002746
  • Stepanov, S. E.; Tsyganok, I. I. Comparative Analysis of Spectral Properties of the Hodge–De Rham and Tachibana Operators, Journal of Mathematical Sciences, Volume 207 (2015) no. 4, p. 614 | DOI:10.1007/s10958-015-2386-5
  • Alexandrino, Marcos M.; Bettiol, Renato G. Low Cohomogeneity Actions and Positive Curvature, Lie Groups and Geometric Aspects of Isometric Actions (2015), p. 139 | DOI:10.1007/978-3-319-16613-1_6
  • Stepanov, Sergey Evgenevich; Mikes, Josef Лапласиан Ходжа-де Рама и оператор Тачибаны на компактном римановом многообразии со знакоопределенным оператором кривизны, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 2, p. 167 | DOI:10.4213/im8156
  • Stepanov, Sergey E.; Mikeš, Josef Eigenvalues of the Tachibana operator which acts on differential forms, Differential Geometry and its Applications, Volume 35 (2014), p. 19 | DOI:10.1016/j.difgeo.2014.03.004
  • Derdzinski, Andrzej; Gal, Światosław R. Curvature spectra of simple Lie groups, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 83 (2013) no. 2, p. 219 | DOI:10.1007/s12188-013-0085-z
  • Rivertz, Hans Jakob On real local isometric immersions of CQc2 into CP3, Journal of Geometry, Volume 104 (2013) no. 2, p. 357 | DOI:10.1007/s00022-013-0157-3
  • Bakas, Ioannis; Kong, Shengli; Ni, Lei Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 663 | DOI:10.1515/crelle.2011.101
  • Hu, Zejun; Nishikawa, Seiki; Simon, Udo Critical metrics of the Schouten functional, Journal of Geometry, Volume 98 (2010) no. 1-2, p. 91 | DOI:10.1007/s00022-010-0057-8
  • Ahn, Changhyun Squashing gravity dual of N=6 superconformal Chern–Simons gauge theory, Classical and Quantum Gravity, Volume 26 (2009) no. 10, p. 105001 | DOI:10.1088/0264-9381/26/10/105001
  • Ahn, Changhyun Other squashing deformation andN=3superconformal Chern–Simons gauge theory, Physics Letters B, Volume 671 (2009) no. 2, p. 303 | DOI:10.1016/j.physletb.2008.12.022
  • Galaz-Garcia, Fernando Bounds on Characteristic Numbers by Curvature and Radius, Rocky Mountain Journal of Mathematics, Volume 39 (2009) no. 4 | DOI:10.1216/rmj-2009-39-4-1225
  • Nikonorov, Yu. G.; Rodionov, E. D.; Slavskii, V. V. Geometry of homogeneous Riemannian manifolds, Journal of Mathematical Sciences, Volume 146 (2007) no. 6, p. 6313 | DOI:10.1007/s10958-007-0472-z
  • Ahn, Changhyun; Paeng, Jinsub Three-dimensional SCFTs, supersymmetric domain wall and renormalization group flow, Nuclear Physics B, Volume 595 (2001) no. 1-2, p. 119 | DOI:10.1016/s0550-3213(00)00687-8
  • Ahn, Changhyun; Rey, Soo-Jong Three-dimensional CFTs and RG flow from squashing M2-brane horizon, Nuclear Physics B, Volume 565 (2000) no. 1-2, p. 210 | DOI:10.1016/s0550-3213(99)00660-4
  • Ahn, Changhyun; Rey, Soo-Jong More CFTs and RG flows from deforming M2/M5-brane horizon, Nuclear Physics B, Volume 572 (2000) no. 1-2, p. 188 | DOI:10.1016/s0550-3213(00)00008-0
  • Tsukada, Kazumi Totally geodesic submanifolds of Riemannian manifolds and curvature-invariant subspaces, Kodai Mathematical Journal, Volume 19 (1996) no. 3 | DOI:10.2996/kmj/1138043656
  • TANNO, Shukichi EULER-POINCARÉ CHARACTERISTIC OF EIGHT-DIMENSIONAL LOCALLY SYMMETRIC SPACES, Kyushu Journal of Mathematics, Volume 49 (1995) no. 2, p. 321 | DOI:10.2206/kyushujm.49.321
  • Farrell, F. T.; Jones, L. E. Complex hyperbolic manifolds and exotic smooth structures, Inventiones Mathematicae, Volume 117 (1994) no. 1, p. 57 | DOI:10.1007/bf01232234
  • Wang, McKenzie; Ziller, Wolfgang Symmetric spaces and strongly isotropy irreducible spaces, Mathematische Annalen, Volume 296 (1993) no. 1, p. 285 | DOI:10.1007/bf01445107
  • Gromov, M. Foliated plateau problem, part I: Minimal varieties, Geometric and Functional Analysis, Volume 1 (1991) no. 1, p. 14 | DOI:10.1007/bf01895417
  • Gromov, M. Foliated plateau problem, part II: Harmonic maps of foliations, Geometric and Functional Analysis, Volume 1 (1991) no. 3, p. 253 | DOI:10.1007/bf01896204
  • Montesinos, Angel J. Sur la caractéristique d'Euler des variétés d'Einstein de dimension 6 à courbure sectionnelle négative pincée, Kodai Mathematical Journal, Volume 14 (1991) no. 3 | DOI:10.2996/kmj/1138039465
  • Musso, Emilio On the twistor space of the six-sphere, Bulletin of the Australian Mathematical Society, Volume 39 (1989) no. 1, p. 119 | DOI:10.1017/s0004972700028021
  • Hsiung, Chuan-Chih; Shiskowski, Kenneth Michael Euler-Poincaré characteristic and higher order sectional curvature. I, Transactions of the American Mathematical Society, Volume 305 (1988) no. 1, p. 113 | DOI:10.1090/s0002-9947-1988-0920149-3
  • Croke, Christopher B.; Karcher, Hermann Volumes of small balls on open manifolds: lower bounds and examples, Transactions of the American Mathematical Society, Volume 309 (1988) no. 2, p. 753 | DOI:10.1090/s0002-9947-1988-0961611-7
  • Nishikawa, Seiki On deformation of Riemannian metrics and manifolds with positive curvature operator, Curvature and Topology of Riemannian Manifolds, Volume 1201 (1986), p. 202 | DOI:10.1007/bfb0075657
  • Wang, M.; Ziller, W. Einstein metrics with positive scalar curvature, Curvature and Topology of Riemannian Manifolds, Volume 1201 (1986), p. 319 | DOI:10.1007/bfb0075665
  • Nicolai, H. Recent Developments in N = 8 Supergravity, Electroweak Effects at High Energies (1985), p. 759 | DOI:10.1007/978-1-4613-2451-5_49
  • DeTurck, Dennis M.; Koiso, Norihito Uniqueness and non-existence of metrics with prescribed Ricci curvature, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 1 (1984) no. 5, p. 351 | DOI:10.1016/s0294-1449(16)30417-6
  • Nilsson, B E W; Pope, C N Hopf fibration of eleven-dimensional supergravity, Classical and Quantum Gravity, Volume 1 (1984) no. 5, p. 499 | DOI:10.1088/0264-9381/1/5/005
  • Tanno, Shukichi Euler characteristics of some six-dimensional Riemannian manifolds, Kodai Mathematical Journal, Volume 7 (1984) no. 3 | DOI:10.2996/kmj/1138036951
  • Page, Don N. Classical stability of round and squashed seven-spheres in eleven-dimensional supergravity, Physical Review D, Volume 28 (1983) no. 12, p. 2976 | DOI:10.1103/physrevd.28.2976
  • Awada, M. A.; Duff, M. J.; Pope, C. N. N=8Supergravity Breaks Down toN=1, Physical Review Letters, Volume 50 (1983) no. 5, p. 294 | DOI:10.1103/physrevlett.50.294
  • Taubes, Clifford Henry Self-dual Yang-Mills connections on non-self-dual 4-manifolds, Journal of Differential Geometry, Volume 17 (1982) no. 1 | DOI:10.4310/jdg/1214436701
  • Ziller, W. Homogeneous einstein metrics on spheres and projective spaces, Mathematische Annalen, Volume 259 (1982) no. 3, p. 351 | DOI:10.1007/bf01456947
  • Kleinjohann, Norbert; Walter, Rolf Nonnegativity of the curvature operator and isotropy for isometric immersions, Mathematische Zeitschrift, Volume 181 (1982) no. 1, p. 129 | DOI:10.1007/bf01214986
  • Bourguignon, Jean-Pierre; Polombo, Albert Intégrands des nombres caractéristiques et courbure: rien ne va plus dès la dimension 6, Journal of Differential Geometry, Volume 16 (1981) no. 4 | DOI:10.4310/jdg/1214436366

Cité par 71 documents. Sources : Crossref