@article{TSG_2000-2001__19__93_0, author = {Sa Earp, Ricardo and Toubiana, Eric}, title = {Variants on {Alexandrov} reflection principle and other applications of maximum principle}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {93--121}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, year = {2000-2001}, mrnumber = {1909079}, zbl = {1011.53005}, language = {en}, url = {http://www.numdam.org/item/TSG_2000-2001__19__93_0/} }
TY - JOUR AU - Sa Earp, Ricardo AU - Toubiana, Eric TI - Variants on Alexandrov reflection principle and other applications of maximum principle JO - Séminaire de théorie spectrale et géométrie PY - 2000-2001 SP - 93 EP - 121 VL - 19 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_2000-2001__19__93_0/ LA - en ID - TSG_2000-2001__19__93_0 ER -
%0 Journal Article %A Sa Earp, Ricardo %A Toubiana, Eric %T Variants on Alexandrov reflection principle and other applications of maximum principle %J Séminaire de théorie spectrale et géométrie %D 2000-2001 %P 93-121 %V 19 %I Institut Fourier %C Grenoble %U http://www.numdam.org/item/TSG_2000-2001__19__93_0/ %G en %F TSG_2000-2001__19__93_0
Sa Earp, Ricardo; Toubiana, Eric. Variants on Alexandrov reflection principle and other applications of maximum principle. Séminaire de théorie spectrale et géométrie, Tome 19 (2000-2001), pp. 93-121. http://www.numdam.org/item/TSG_2000-2001__19__93_0/
[1] Constant mean curvature tori in terms of elliptic fonctions. J. Reine Ang. Math. 374,169-192 ( 1987) | MR | Zbl
.[2] Kenmotsu type representation formula for surfaces with prescribed mean curvature in the hyperbolic 3-space, J. Math. Soc. Japan, 52, no.4, 877-898 ( 2000). | MR | Zbl
and .[3] Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3 sphere, Tohoku Math. J. 52, 95-105 ( 2000). | MR | Zbl
and .[4] Uniqueness theorems for surfaces in the large. I, (Russian) Vestnik Leningrad Univ. Math. 11,5-17 ( 1956). | MR | Zbl
.[5] Some nonlinear problems in Riemannian geometry. Springer ( 1998). | MR | Zbl
[6] Constant mean curvature surfaces boundedby a plane curve. Mat. Contemp. 1,3-15 ( 1991). | MR | Zbl
.[7] Eigenvalue and "twisted" eigenvalues problems, applications to CMC- surfaces. To appear in J. Math. Pures and Appl. | Zbl
and .[8] New results on prescribed mean curvature hypersurfacesin Space Forms. An Acad. Bras. Cl. 67, No 1,1-5 ( 1995). | Zbl
, .[9] Prescribed mean curvature hypersurfaces in H n+1 (-1 ) with convexplanar boundary, I. Geom. Dedicata, 71, 61-74 ( 1998). | MR | Zbl
and .[10] Prescribed mean curvature hypersurfaces in Hn+1 with convex planar boundary, II. Séminaire de théorie spectrale et géométrie de Grenoble 16, 43-79 ( 1998). | EuDML | Numdam | Zbl
and .[11] General curvature estimatesfor stable H-surfaces immersed into space form. J. Math. Pures Appl. 78, 667-700 ( 1999). | MR | Zbl
and .[12] Index growth of hypersurfaces with constant mean curvature. To appear in Math. Z. | MR | Zbl
, and .[13] Multiple solutions of H-systems and Rellich's conjecture. Commun. Pures Appl. Math. XXXVII, 149-187, 1984. | MR | Zbl
and .[14] All constant mean curvature tori in R3, S3, H3 in terms of elliptic functions. Math. Ann. 290,209-245 ( 1991). | EuDML | MR | Zbl
.[15] Geometrie configurations of constant mean curvature surfaces with planar boundary. An. Acad. Bras. Ci. 63, No 1, 5-19 ( 1991). | MR | Zbl
and .[16] Structure theorems for constant mean curvature surfaces bounded by a planar curve. Indiana Univ. Math. J. 40, No 1, 333 343 ( 1991). | MR | Zbl
, , and .[17] On the Structure of certain Weingarten surfaces with boundary a circle. An. Fac. Sci. Toulouse VI, No 2, 243-255 ( 1997). | EuDML | Numdam | MR | Zbl
and .[18] Surfaces of mean curvature one in hyperbolic space, Asterisque 154-155 , Soc. Math de France, 321-347 ( 1987). | Numdam | MR | Zbl
.[19] Complex analysis and a class of Weingarten surfaces. Preprint.
.[20] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. XLII, 271-297 ( 1989). | MR | Zbl
, and .[21] The Dirichlet problemfor nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian. Acta Math. 155, 261-301 ( 1985). | MR | Zbl
, , .[22] Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten surfaces. Comm. Pure Appl. Math. XLI, 47-70 ( 1988). | MR | Zbl
, , .[23] Sur les sous-variétés à courbure moyenne constante dans l'espace hyerbolique. Doctoral Thesis, Université Joseph Fourier (Grenoble I) ( 1995).
.[24] On special W-surface. Trans. Amer. Math. Soc. 783-786 ( 1955). | Zbl
.[25] Topologie et courbure des surfaces minima les proprement plongées de R3. Ann. Math. 2nd Series 145, 1-31 ( 1997). | MR | Zbl
,[26] The geometry of finite topology Bryant surfaces.To appear in Annals of mathematics. | Zbl
, and .[27] Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. XXVIII, 333-354 ( 1975). | MR | Zbl
and .[28] Helicoidal surfaces with constant mean curvature. Tôhoku Math J. 34 , 425-435 ( 1982). | MR | Zbl
and .[29] On Alexandrov - Bernstein theorems in hyperbolic space. Duke Math. J. 50, No. 4 ( 1983). | MR | Zbl
,[30] The influence of the boundary behaviour on hypersurfaces with constant mean curvature in Hn+1. Comm. Math. Helvitici 61, 429-491 ( 1986). | EuDML | MR | Zbl
, , .[31] The Plateau problem for parametric surfaces with prescribed mean curvature In: Geometric Analysis and Calculus of Variations (edited by J. Jürgen), pp.13-70, International Press ( 1996). | MR | Zbl
and .[32] Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature. J.Analyse Math.14, 139-160 ( 1965). | MR | Zbl
.[33] Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 ( 1979). | MR | Zbl
, and .[34] Elliptic partial differential equations of second order. Springer ( l983). | Zbl
and .[35] Sobre hipersuperficies comcurvatura média constante no espaço hiperbólico. Doctoral thesis, IMPA ( 1985).
.[36] The Plateau problem for surfaces of prescribed mean curvature in a Riemannian manifold. J. Diff. Geom. 8, 317-330 ( 1972). | MR | Zbl
.[37] Regularity of minimizing surfaces of prescribed mean curvature. Ann. of Math. 97, No. 2, 275-305 ( 1973). | MR | Zbl
.[38] Umbilical points and W-surfaces. Amer. J. Math. 76, 502-508 ( 1954). | MR | Zbl
, .[39] Introduction à l'analyse non linéaire sur les variétés. Diderot Editeur ( 1997). | Zbl
.[40] On the Plateau problem for surfaces of constant mean curvature.Commun. Pure Appl. Math. XXIII, 97-114 ( 1970). | MR | Zbl
.[41] Complete embedded surfaces of finite total curvature. Geometry V (R. Osserman, ed.), Springer, 5-93 ( 1997). | MR | Zbl
and .[42] The maximum principle for hypersurfaces with vanishing curvature functions. J. Diff. Geom. 41, 247-258 ( 1995). | MR | Zbl
and .[43] Two-ended hypersurfaces with zero scalar curvature. Indiana Univ. Math. J. 48, No. 3, 867-882 ( 1999). | MR | Zbl
and .[44] The strong halfspace theorem for minimal surfaces. Invent iones Math. 101, 373-377 ( 1990). | EuDML | MR | Zbl
and .[45] Differential geometry in the large. Lect. Notes in Math., Springer, 1000 ( 1983). | MR | Zbl
.[46] On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J. 49, No.3 ( 1982). | MR | Zbl
.[47] Complete constant mean curvature surfaces in Euclidean three space. Ann. Math. 131, 239-330 ( 1990). | MR | Zbl
.[48] Compact constant mean curvature surfaces in Euclidean three-space. J. Diff. Geom. 33, 683-715 ( 1991). | MR | Zbl
.[49] Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245, 89-99 ( 1979). | EuDML | MR | Zbl
.[50] The structure of complete embedded surfaces with constant mean curvature. J. Diff. Geom. 30, 465-503 ( 1989). | MR | Zbl
, and .[51] Constant mean curvature surfacesin hyperbolic Space. Amer. J. Math. 114, 1-143 ( 1992). | MR | Zbl
, , and .[52] Symmetry of hypersurfaces of constant mean curvature with symmetric boundary. Math. Z. 191,567-574 ( 1986). | MR | Zbl
,[53] Weierstrass representation for minimal surfaces in hyperbolic space, Tohoku Math. J. (2) 49, no. 3, 367-377 ( 1997). | MR | Zbl
.[54] Sphere theorems via Alexandrov for constant Weingarten curvature hyper surfaces-appendix to a note of A. Ros. J. Diff. Geom. 27, 221-223 ( 1988). | Zbl
.[55] Refined asymptotics for constant scalar curvature metries with isolated singularities. Invent. Math. 135, 233-272 ( 1999). | MR | Zbl
, , and .[56] Global Geometry of Extremal Surfaces in Three-Space, Doctoral Thesis, University of California, Berkeley ( 1985).
.[57] Complete minimal surfaces in S3. Ann. Math. 92, 335-374 ( 1970). | MR | Zbl
.[58] Lectures on minimal submanifolds. Secon edition, Publish or Perish ( 1980). | Zbl
.[59] A maximum principle at infinity for minimal surfaces and applications. Duke Math. J. 57, 819-828 ( 1988). | MR | Zbl
and .[60] Mononicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Commun. Part. Diff. Eq. 16, No 2&3, 491-526 ( 1991). | MR | Zbl
[61] Mononicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. Part. Diff. Eq. 16, No 4&5, 585-615 ( 1991). | MR | Zbl
[62] Symmetry of constant mean curvature hypersurfaces in hyperbolic space. Duke Math. J. 52, No. 1 ( 1985). | MR | Zbl
, .[63] Constant mean curvalure dises with bounded area. Proc. Amer Math. Soc. 123, 1555-1558 ( 1995). | MR | Zbl
and ,[64] On embedded complete minimal surfaces of genus zero. J. Diff. Geom. 33, No 1, 293 300 ( 1991). | MR | Zbl
and .[65] Symmetry via spherical reflection. To appear in J. Diff. Anal. | MR | Zbl
.[66] The topology and geometry of embedded surfaces of constant mean curvature. J. Diff. Geom. 27,539-552 ( 1988). | MR | Zbl
.[67] The maximum principle al infinity for minimal surfaces in flat 3-manifolds. Comm. Math. Helv. 65, 255-270 ( 1990). | MR | Zbl
and .[68] The geometry and conformal structure of properly embedded minimal surfaces of finite topology in F3. Invent. Math. 114, 625-639 ( 1993). | MR | Zbl
and .[69] The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179,151-168 ( 1982). | MR | Zbl
and .[70] Symmetry and overdetermined boundary value problems. Forum Math. 3,143-156 ( 1991). | MR | Zbl
.[71] The problem of Plateau on a Riemannian manifold. Ann. of Math. 49, No. 4, 807-851, 1948. | MR | Zbl
[72] Some remarks on embedded hypersurfaces in Hyperbolic Space of constant mean curvature and spherical boundary. Ann. Glob. An. and Geom. 13, 23-30 ( 1995) | MR | Zbl
, .[73] Some Properties of Hypersurfaces of Prescribed Mean Curvature in Hn+1. Bull. Sc. Math. 120. No 6, 537-553 ( 1996). | MR | Zbl
and .[74] On the existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space.Geometric Analysis and Calculus of Variations, International Press, J. Jost (Ed.), 253-266 ( 1996). | MR | Zbl
and .[75] Superficies helicoidais com curvatura constante no espaço de formas tridimensionais. Doctoral Thesis, PUC-Rio ( 1995).
.[76] On the classification of constant mean curvature tori. Ann. Math. 130, 407-451 ( 1989). | MR | Zbl
and .[77] Maximum principles in differential equations. Elglewood Cliffs., New Jersey Prentice-Hall ( 1967). | MR | Zbl
and .[78] Foundations of hyperbolic manifolds. Springer ( 1999). | MR | Zbl
.[79] Hypersurfaces of constant curvature in space forms. Bull. Sc. Math. 2e série 117, 211 -239 ( 1993). | MR | Zbl
.[80] Some recent developments in the theory of properly embedded minimal surfaces in R3. Séminaire Bourbaki, 44ème année, No 759 ( 1991-92). | Numdam | Zbl
.[81] Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Amer. Math. Soc. 126, No 9, 2755-2762 ( 1998). | MR | Zbl
and .[82] Constant mean curvature surfaces in a half-space with boundary in the boundary of the half-space. J. Diff. Geom. 44, 807-817 ( 1996) | MR | Zbl
and .[83] Some remarks on surfaces of prescribed mean curvature. Differential Geometry (Symposium in honor of M. do Carmo). Pitman monographs and surveys in Pure and Applied Mathematics, 123-148 ( 1991). | MR | Zbl
and .[84] Some Structure Theorems for Complete Constant Mean Curvature Surfaces with Boundary a Convex Curve. Proc. Amer. Math. Soc. 113, No 4, 1045-1053 ( 1991). | MR | Zbl
and .[85] The geometry of properly embedded special surfaces in R3; e.g.surfaces satisfying aH + bK = 1, where a and b are positive. Duke Math. J.73, No 2, 291-306 ( 1994). | MR | Zbl
and .[86] Constant mean curvature surfaces in hyperbolic 3-space with two ends. J. Exp.Math., No 1,101-1197 ( 1998). | MR | Zbl
and .[87] Irreducible constant mean curvature l surfaces in hyperbolic space with positive genus. Tôhoku Math. J., 449-484, 49 ( 1997). | MR | Zbl
, and .[88] Recent developments on the structure of compact surfaces with planar boundary In: The Problem of Plateau (edited by Th.M. Rassias), pp. 245-257, World Scientific ( 1992). | MR | Zbl
.[89] On two mean curvature equations in hyperbolic space. In: New Approaches in Nonlinear Analysis (editedby Th.Rassias), Hadronic Press, U.S.A., 171-182 ( 1999). | Zbl
.[90] Sur les surfaces de Weingarten spéciales de type minimal Boletim da Socie dade Brasileira deMatemática, 26, No. 2, 129-148 ( 1995). | MR | Zbl
and .[91] Classification des Surfaces Speciales de Revolution de Type Delaunay. Amer. J. Math. 121, No 3, 671-700 ( 1999). | MR | Zbl
and .[92] Symmetry of properly embedded special Weingarten surfacesin H3. Trans. Amer. Math. Soc. 352, No 12, 4693-4711 ( 1999). | MR | Zbl
and .[93] Some applications of maximum principle to hypersurfaces in Euclidean and hyperbolic space. In: New Approaches in Nonlinear Analysis (edited by Th.Rassias), Hadronic Press, U.S.A., 183-202 ( 1999). | Zbl
and .[94] Existence and uniqueness of minimal graphs in hyperbolic space. Asian Journal of Mathematics (new Journal), (Editors-in-Chief: S-T Yau (Harvard) e R. Chan (Hong Kong)),4, No. 3, 669-694, International Press ( 2000). | MR | Zbl
and .[95] On the Geometry of Constant Mean Curvature One Surfaces in Hyperbolic Space. Illinois J. Math. 45, No 2 ( 2001). | MR | Zbl
and .[96] Introduction à la géométrie hyperbolique et aux surfaces de Riemann. Diderot Editeur, Paris ( 1997). | Zbl
and .[97] Meromorphic data for mean curvature one surfaces in hyperbolic space. Preprint.
and .[98] A Weierstrass-Kenmotsu formula for prescribed mean curvature surfaces in hyperbolic space. Séminaire de Théorie Spectrale et Géométrie de l'Institut Fourier de Grenoble, 19, 9-23 ( 2001). | EuDML | Numdam | MR | Zbl
and .[99] Meromorphic data for mean curvature one surfaces in hyperbolic space, II. Preprint. | Zbl
and .[100] Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolic, Docto Thesis, Univ. Paris VII, ( 1997).
.[101] A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43,304-318 ( 1971). | MR | Zbl
.[102] Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Diff. Geom. 18, 791-809 ( 1983). | MR | Zbl
.[103] Déformations de surfaces minimales. Thèse de Doctorat, Univ. de Paris VII ( 1993).
[104] Surfaces of constant mean curvature 1 in H3 and algebraic curves on a quadric. Proc. AMS 122 No4, 1211-1220 ( 1994). | MR | Zbl
.[105] The generalization of Delaunay's theorem to constant mean curvature surfaces with conti nuous internai symmetry. Preprint.
.[106] A comprehensive introduction to differential geometry. Publish or Perish Volume IV, second edition ( 1979). | Zbl
.[107] Parametric surfaces of prescribed mean curvature In: Calculus of variations and geometrie evolution problems (edited by S. Hildebrant and M. Struwe), 211-265, Lecture notes in Mathematics 1713, Springer ( 1999). | MR | Zbl
.[108] Large H-surfaces via the Mountain-pass lemma. Math. Ann. 270, 441-459 ( 1985). | MR | Zbl
.[109] Plateau's problem and the calculus of variations. Math. Notes 35, Princeton Univ. Press ( 1989). | Zbl
.[110] Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space. Annals of Math. 137, 611-638 ( 1993). | MR | Zbl
and .[111] A parametrization of the Weierstrass formulae and perturbation of some minimal surfaces in R3 into the hyperbolic 3-space. J. Reine Angew. Math. 432, 93-116 ( 1992). | MR | Zbl
and .[112] Surfaces of constant mean curvature c in H3(-c2) with prescribed Gauss map. Math. Ann. 304, 203-224 ( 1996). | MR | Zbl
and .[113] An existence theorem for surfaces of constant mean curvature. Math. Anal. Appl. 26, 318-344 ( 1969). | MR | Zbl
.[114] A general existence theorem for surfaces of constant mean curvature. Math. Z. 120, 277-288 ( 1971). | MR | Zbl
.[115] Large solutions to the volume constrained Plateau problem. Arch. Mech. Anal. 75, 59-77 ( 1980). | MR | Zbl
.[116] A counter-example to the conjecture of H. Hopf. Pacific J. Math. 121,193-243 ( 1986). | Zbl
.[117] Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. XXVIII, 201-228 ( 1975). | MR | Zbl
.