@article{TSG_1997-1998__16__43_0, author = {Barbosa, Jo\~ao Lucas Marques and Sa Earp, Ricardo}, title = {Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, {II}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {43--79}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, year = {1997-1998}, zbl = {0942.53044}, language = {en}, url = {http://www.numdam.org/item/TSG_1997-1998__16__43_0/} }
TY - JOUR AU - Barbosa, João Lucas Marques AU - Sa Earp, Ricardo TI - Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II JO - Séminaire de théorie spectrale et géométrie PY - 1997-1998 SP - 43 EP - 79 VL - 16 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_1997-1998__16__43_0/ LA - en ID - TSG_1997-1998__16__43_0 ER -
%0 Journal Article %A Barbosa, João Lucas Marques %A Sa Earp, Ricardo %T Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II %J Séminaire de théorie spectrale et géométrie %D 1997-1998 %P 43-79 %V 16 %I Institut Fourier %C Grenoble %U http://www.numdam.org/item/TSG_1997-1998__16__43_0/ %G en %F TSG_1997-1998__16__43_0
Barbosa, João Lucas Marques; Sa Earp, Ricardo. Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II. Séminaire de théorie spectrale et géométrie, Tome 16 (1997-1998), pp. 43-79. http://www.numdam.org/item/TSG_1997-1998__16__43_0/
[1] Hypersurfaces with Given Mean Curvature and Quasilinear Elliptic Equations with Strong Nonlinearities, Mat. Sbornik 75, 604-638 ( 1968). | MR | Zbl
,[2] Geometric Problems in Quasilinear Elliptic Equations, Russian Math. Surveys 25,45-109 ( 1970). | MR | Zbl
,[3] Geometria Hiperbólica. 20° Colóquio Brasileiro de Matematica, ( 1995).
,[4] Stability of Hypersurfaces with Constant r-Mean Curvature, Annals of Global Analysis and Geometry, 15, 277-297, ( 1997). | MR | Zbl
and ,[5] New Results on Prescribed Mean Curvature Hypersurfaces in Space Forms, Anais da Acad. Bras. de Ciências 67,1-5 ( 1995). | MR | Zbl
and ,[6] Prescribed Mean Curvature Hypersurfaces in Hn+1 ( - l ) with Convex Planar Boundary, I. To appear in Geometriae Dedicata 71, 61-74 ( 1998). | MR | Zbl
and ,[7] Geometric Configurationsof Constant Mean Curvature Surfaces with Planar Boundary, Anais da Acad. Bras. de Ciências 63, 5-19 ( 1991). | MR | Zbl
and ,[8] Special Weingarten Surfaces with Boundary a Round Circle, Annales de la Faculté de Sciences de Toulouse 2 VI, 243-255 ( 1997). | Numdam | Zbl
and ,[9] Structure Theorems for Constant Mean Curvarure Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J. 40,333-343 ( 1991). | MR | Zbl
, , and ,[10] Nonlinear Second-order Eiliptic Equations V.The Dirichlet Problem for Weingarten Hypersurfaces, Comm. on Pure and Applied Math 61,47-70 ( 1988). | MR | Zbl
, and ,[11] Sobre Hipersuperflcies com Curvatura Média Constante no Espaço Hiperbólico, Doctoral thesis, IMPA, 1985.
,[12] Elliptic Partial Differential Equations of Second Order, Springer-Verlag ( 1983). | MR | Zbl
and ,[13] Uma Equação do Tipo Monge-Ampère, Dissertação de Mestrado, PUC-Rio ( 1995).
,[14] Compact Constant Mean Curvature Surfaces in Euclidean Three-Space, J.Diff. Geometry 33.683-715( 1991). | MR | Zbl
,[15] Constant Mean Curvature Surfaces in Hyperbolic Space, American J. of Math. 114, 1-143 ( 1992). | MR | Zbl
, , and ,[16] Global Geometry of Extremal Surfaces in Three-Space, Doctoral thesis, University of California, Berkeley ( 1985).
,[17] Constant Mean Curvature Surfaces with boundary in the hyperbolic space, preprint 1996. | MR
,[18] Existence of Constant Mean Curvature Graphs in Hyperbolic Space, submitted to Calculus of Variations and Partial Differential Equations. | Zbl
, and ,[19] Constant Mean Curvature Discs with Bounded Area, Proceedings of A.M.S. 123, 1555-1558 ( 1995). | MR | Zbl
and ,[20] Hypersurfaces de Courbure Constante dans l'Espace Hyperbolique, Thèse de Doctorat, Université de Paris VII, Paris ( 1995).
,[21] Some Remarks on Embedded Hypersurfaces in Hyperbolic Space of Constant Mean Curvature and Spherical boundary, Ann. Glob. An. and Geom. 13, 23-30 ( 1995). | MR | Zbl
and ,[22] Some remarks on Positive Scalar and Gauss-Kronecker Curvature Hypersurfaces of Rn+1 and Hn+l, Annales de l'Institut Fourier, 47, (4), 1209-1218 ( 1997). | EuDML | Numdam | MR | Zbl
and ,[23] Some Properties of Hypersurfaces of Prescribed Mean Curvature in Hn+1, Bull. Sc. Math. (6) 120, 537-553 ( 1996). | MR | Zbl
and ,[24] Some Remarks on Compact Constant Mean Curvature Hypersurfaces in a Halfspace on Hn+1, to appear in the J. of Geometry. | Zbl
and ,[25] On the Existence and Uniqueness of Constant Mean Curvature Hypersurfaces in Hyperbolic Space, Geometric Analysis and the Calculus of Variation, ed. J. Jost, International Press, Cambridge, 253-266 ( 1996). | MR | Zbl
and ,[26] The Gauss Curvature and Minkowski Problems in Space Forms, Contemporary Mathematics 101, 107-123 ( 1989). | MR | Zbl
,[27] Maximum Principles in Differential Equations, Elglewood Cliffs, New Jersey Prentice-Hall, ( 1967). | MR | Zbl
and ,[28] Some Problems in Analysis and Geometry, to appear in the volume Complex Analysis in Several Variables, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
and ,[29] Hypersurfaces of Constant Curvature in Space Forms, Bulletin des Sciences Mathématiques, 2° série, 117,211-239 ( 1993). | MR | Zbl
,[30] Constant Mean Curvature Surfaces in a Half-Space of R3 with Boundary in the Boundary of a Half-Space, J. Diff. Geometry 44, 807-817 ( 1996). | MR | Zbl
and ,[31] The Geometry of ProperlyEmbedded Special Surfaces in R3; e.g., Surfaces Satisfying aH + bK = 1, where a and b are Positive, Duke Mathematical Journal, 73, (2), 291-306 ( 1994). | MR | Zbl
and ,[32] Recent Developments on the Structure of Compact Surfaces with Planar Boundary, The Problem of Plateau (edited by Th. M. Rassias), World Scientific, 245-257 ( 1992). | MR | Zbl
,[33] On two Mean Curvature Equations in Hyperbolic Space, to appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
,[34] Introduction à la Géométrie Hyperbolique et aux Surfaces de Riemann, Ed. Diderot Multimedia, Paris, 1997. | Zbl
and ,[35] Some Applications of Maximum Principle to Hypersurfaces Theory in Euclidean and Hyperbolic Space. To appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. | Zbl
and ,[36] Existence and uniqueness of minimal graphs in hyperbolic space, preprint. | Zbl
and ,[37] Symmetry of Properly Embedded Special Weingarten Surfaces in H3, to appear. | Zbl
and ,[38] Uniqueness, Symmetry, and Embeddedness of Minimal Surfaces, J.Diff. Geometry, 18, 791-809 ( 1983). | MR | Zbl
,[39] Surfaces de Courbure Moyenne Constante dans les Espaces Euclidien et Hyperbolic, doctorat theses, Paris VII, ( 1997).
,