@article{TSG_1999-2000__18__125_0, author = {Aubry, Erwann}, title = {Th\'eor\`eme de la sph\`ere}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {125--155}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, year = {1999-2000}, mrnumber = {1812217}, zbl = {1078.53518}, language = {fr}, url = {http://www.numdam.org/item/TSG_1999-2000__18__125_0/} }
Aubry, Erwann. Théorème de la sphère. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 125-155. http://www.numdam.org/item/TSG_1999-2000__18__125_0/
[1] On complete manifolds with nonnegative Ricci curvature, Journ. A.M.S., 3 ( 1990), 355-374. | MR | Zbl
, ,[2] Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 ( 1990) 405-415. | EuDML | MR | Zbl
,[3] Riemannian geometry : a modern introduction, Cambridge Tracts in Mathematics, Cambridge university press, 1993. | MR | Zbl
,[4] On the structure of space with Ricci curvature bounded below, J. Diff. Geom., 46 ( 1997), 404. | MR | Zbl
, ,[5] Lower bounds on Ricci curvature and the almost rigidity of werped products, Ann. of Math., 144 ( 1996), 189-237. | MR | Zbl
, ,[6] Eigenvalue comparison theorems and its geometric application, Math. Z., 143 ( 1975), 289-297. | EuDML | MR | Zbl
,[7] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 ( 1975), 333-354. | MR | Zbl
, ,[8] Shape of manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 175. | MR | Zbl
,[9] Large manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 193. | MR | Zbl
,[10] Ricci curvature and volume convergence, Annals of Maths, 145 ( 1997), 477. | MR | Zbl
,[11] Volumes, courbure de Ricci et convergence des variétés, Sém. Bourbaki, 835 ( 1997-1998) | Numdam
,[12] Variété dont le spectre ressemble à celui de la sphère, Astérisque, 80 ( 1980), 33. | Numdam | MR | Zbl
,[13] (rédigé par J. Lafontaine et P. Pansu); Structures métriques sur les variétés riemanniennes, Textes Math., n° 1, 1981. | MR | Zbl
,[14] Un nouveau résultat de pincement de la première valeur propre du Laplacien et preuve de la conjecture du diamètre pincé, Annales Institut Fourier, 43 ( 1993), 843. | Numdam | MR | Zbl
,[15] Certain condition for a riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 ( 1962), 333-340. | MR | Zbl
,[16] On eigenvalue pinching in positive Ricci curvature, Preprint. | Zbl
, , Recent developments in sphere theorems, Proc. of Symp. in Pure Math., 54 ( 1993), Part 3. |