@article{TSG_1999-2000__18__119_0, author = {Carron, Gilles}, title = {D\'eterminant relatif et la fonction {Xi}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {119--124}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, year = {1999-2000}, mrnumber = {1812216}, zbl = {0981.58024}, language = {fr}, url = {http://www.numdam.org/item/TSG_1999-2000__18__119_0/} }
Carron, Gilles. Déterminant relatif et la fonction Xi. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000), pp. 119-124. http://www.numdam.org/item/TSG_1999-2000__18__119_0/
[BK] on the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 ( 1962), 475-478 ; traduction anglaise in Soviet. Math. Dokl, 3 ( 1962). | MR | Zbl
, ,[B-Y] The spectral shift fonction, the work of M.G. Krein and its further development, St. Petersburg Math. J., 4 ( 1993), no 5, 833-870. | MR | Zbl
, ,[B] Relative Index theory, J. Funct. Anal, 105 ( 1992), 63-76. | MR | Zbl
,[B-F-K] Mayer-Vietoris formula for determinants of elliptic operators, J. Funct. Anal, 107 ( 1992) 34-65. | MR | Zbl
, , ,[Bu] Scattered plane waves, spectral asymptotics and trace formulae in exterior problems. Dokl Akad. Nauk SSSR 197 ( 1971) 999-1002 ; traduction anglaise Soviet Math. Dokl, 12 ( 1971),591 -595]. | MR | Zbl
,[C-Z] Spectral asymptotics for manifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble),45, ( 1995), 251-263. | Numdam | MR | Zbl
, ,[C1] Spectral asymptotics for compactly supported perturbations of the Laplacian on Rn, Comm. Partial Differential Equations, 23 ( 1998), n° 5-6, 933-948. | MR | Zbl
,[C2] Weyl asymptotics for the laplacian on asymtoticalty euclidean spaces, American J. of Math., 121 ( 1999),1-22. | MR | Zbl
,[CdV] Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Sci.École Norm. Sup., 4 ( 1981), 27-39. | Numdam | MR | Zbl
,[F] Functional determinants and geometry, Invent. Math., 88 ( 1987) 447-493. | MR | Zbl
,[Gu] Asymptotique de la phase de diffusion pour l'opérateur de Schrödinger avec potentiel. C. R. Acad. Sci. Paris Sér. 1 Math., 293 ( 1981), n° 12, 601-603. | MR | Zbl
,[G-Z] Scattering asymptotics for Riemann surfaces, Ann. of Math., 145 ( 1997), 597-660. | MR | Zbl
, ,[H-Z] Determinants of laplacians in exterior domains, IMRN, ( 1999), n° 18, pp 971-1004. | MR | Zbl
, ,[J-K] Asymptotics behaviour of the scattering phase for exterior domains, Comm. Partial Differential Equations, 3 ( 1978), 1165-1195. | MR | Zbl
, ,[K1] On the trace formula in perturbation theory, Mat. Sb., 75 ( 1953), 597-626. | MR
,[K2] On perturbation determinants and the trace formula for unitary andselfadjoint operators. Dokl. Akad. Nauk SSSR 144 ( 1962), 268-271 ; traduction anglaise in Soviet. Math. Dokl., 3 ( 1962). | MR | Zbl
,[L-S] A theorem on infinité products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc., 65, ( 1977), 299-303. | MR | Zbl
, ,[M-R] An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 ( 1978), 183-196, 513-536; 46 ( 1979), n° 4,725-731. | MR | Zbl
, ,[Me] Weyl asymptotics for the phase in obstacle scattering, Comm. Partial Differential Equations, 13 ( 1988), 1431-1439. | MR | Zbl
,[Mu 1] Spectral geometry and scattering theory for certain complete surfaces offinite volume, Invent. Math., 109, ( 1992), 265-305. | MR | Zbl
,[Mu 2] Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys., 192 ( 1998), n° 2, 309-347 | MR | Zbl
,[P1] Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends. Internat. J. Math., 6 ( 1995), n° 6, 911-920. | MR | Zbl
,[P2] Spectral asymptotics of Laplace operators on surfaces with cusps. Math. Ann., 303 ( 1995), n° 2, 281-296. | MR | Zbl
,[P-P] Asymptotic behavior of the scattering phase for non-trapping obstacles, Ann. Inst. Fourier (Grenoble), 32 ( 1982), 111-149. | Numdam | MR | Zbl
, ,[R-S] R-torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 ( 1971), 145-210. | MR | Zbl
, ,[R] Sur la formule de Weyls pour les ouverts non-bornés, C. R. Acad. Sci. Paris Sér. I Math., 319 ( 1994), 29-34. | MR | Zbl
,