@article{SPS_1990__24__453_0, author = {Hu, Yao-Zhong}, title = {Calculs formels sur les e.d.s. de {Stratonovitch}}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {453--460}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {24}, year = {1990}, mrnumber = {1071561}, zbl = {0702.60055}, language = {fr}, url = {http://www.numdam.org/item/SPS_1990__24__453_0/} }
Hu, Yao-Zhong. Calculs formels sur les e.d.s. de Stratonovitch. Séminaire de probabilités de Strasbourg, Tome 24 (1990), pp. 453-460. http://www.numdam.org/item/SPS_1990__24__453_0/
[1] Flots et séries de Taylor stochastiques. Prob. Th. Rel. Fields, 81, 1989, p.29-77. | MR | Zbl
).[2] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math., 65, 1957, p. 163-178. | MR | Zbl
).[3] Expansion of solutions of differential systems. Arch. Rat. Mech. Anal., 13, 1963, p. 348-363. | MR | Zbl
).[4] One Parameter Semi-groups, Academic Press, 1980. | MR | Zbl
).[5] Algèbres de Lie nilpotentes, formule de Campbell-Baker-Hausdorff et intégrales itérées de Chen. Sém. Prob. XVI, LN 920, p. 257-267, Springer 1982. | Numdam | MR | Zbl
) et ).[6] Perturbation theory for linear operators, 2nd edition, Springer 1976. | MR | Zbl
).[7] On the representation of solutions of stochastic differential equations. Sém. Prob. XIV, LN 784, p. 282-304, Springer 1980. | Numdam | MR | Zbl
).[8] Modeling and approximation of stochastic differential equations driven by semimartingales. Stochastics, 4, 1981, p. 223-245. | MR | Zbl
).[9] Stochastic differential equations J. Multiv. Anal., 6,1975, p.121-177. | MR | Zbl
).[10] Leçons de géométrie : Groupes et algèbres de Lie. Editions MIR, Moscou 1982. | MR
).[11] The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal., 72, 1987, p. 320-345. | MR | Zbl
).