Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 21, 19 p.

We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space L 3 (R 3 ). This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally L 3 . We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.

@article{SEDP_2006-2007____A21_0,
     author = {Nicolaenko, Basil and Mahalov, Alex and Shilkin, Timofey},
     title = {Local {Smoothness} of {Weak} {Solutions} to the {Magnetohydrodynamics} {Equations} via {Blowup} {Methods}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:21},
     pages = {1--19},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     mrnumber = {2385208},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2006-2007____A21_0/}
}
TY  - JOUR
AU  - Nicolaenko, Basil
AU  - Mahalov, Alex
AU  - Shilkin, Timofey
TI  - Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:21
PY  - 2006-2007
SP  - 1
EP  - 19
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2006-2007____A21_0/
LA  - en
ID  - SEDP_2006-2007____A21_0
ER  - 
%0 Journal Article
%A Nicolaenko, Basil
%A Mahalov, Alex
%A Shilkin, Timofey
%T Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:21
%D 2006-2007
%P 1-19
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2006-2007____A21_0/
%G en
%F SEDP_2006-2007____A21_0
Nicolaenko, Basil; Mahalov, Alex; Shilkin, Timofey. Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 21, 19 p. http://www.numdam.org/item/SEDP_2006-2007____A21_0/

[1] Caffarelli, Kohn, Nirenberg L. Caffarelli, R.V. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | MR | Zbl

[2] L. Escauriaza, G. Seregin, V. Šverak, L 3, - solutions to the Navier-Stokes equations and backward uniqueness, Uspekhi Matematicheskih Nauk, 58 (2003) no. 2, pp. 3-44. | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Šverak, On backward uniqueness for parabolic equations, Arch. Rational Mech. Anal., 169 (2003) no. 2, pp. 147-157. | MR | Zbl

[4] O.A. Ladyzhenskaya, G.A. Seregin, On Partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 1 (1999), pp. 356-387. | MR | Zbl

[5] O.A. Ladyzhenskaya, V.A. Solonnikov, Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid, Proceedings of V.A. Steklov Mathematical Institute, 59 (1960), pp. 115-173 (in Russian). | MR

[6] J. Leray, Sur le mouvement d’un liquide visqueus emplissant l’espace, Acta Math. 63 (1934), pp. 193-248.

[7] F.-H. Lin, A new proof of the Caffarell-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), no. 3, pp. 241-257. | MR | Zbl

[8] J. Necas, M. Růžička, V. Šverak, On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), pp. 283-294. | Zbl

[9] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), pp. 97-112. | MR | Zbl

[10] G. Seregin, Algebra and Analysis, in press.

[11] G. Seregin, Handbook of Mathematical Hydrodynamics, in press.

[12] V.A. Solonnikov, On the estimates of solutions of nonstationary Stokes problem in anisotropic S.L. Sobolev spaces and on the estimate of resolvent of the Stokes problem, Uspekhi Matematicheskih Nauk, 58 (2003) no.2 (350) pp. 123-156. | MR | Zbl

[13] Tai-Peng Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying Local Energy Inequality, Arch. Rational Mech. Anal. 143 (1998), pp. 29-51. | Zbl

[14] Cheng He, Zhouping Xin, On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differential Equations 213 (2005), no. 2, pp. 235-254. | MR | Zbl