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Abstract

We demonstrate that there exist no self-similar solutions of the incompressible mag-
netohydrodynamics (MHD) equations in the space L

3(R3). This is a consequence of
proving the local smoothness of weak solutions via blowup methods for weak solu-
tions which are locally L

3. We present the extension of the Escauriaza-Seregin-Sverak
method to MHD systems.

1 Introduction and Main Results

In this paper we are concerned with the regularity of solutions or existence of the finite time
blow up for the principal system of magneto hydro dynamics (MHD):

∂tv + (v · ∇)v − ∆v + ∇p = rotH ×H
div v = 0

}

in QT , (1.1)

∂tH − ∆H = rot(v ×H)
divH = 0

}

in QT . (1.2)

Here Ω is a domain in R
3, QT = Ω × (−T, 0), unknowns are the velocity field v : QT → R

3,
pressure p : QT → R, and the magnetic field H : QT → R

3. We use the notation (v · ∇)v =
vi,jvj where vi,j ≡

∂vi

∂xj
and summation over repeated indexes from 1 to 3 is assumed.
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The system above can be interpreted as the usual Navier-Stokes equations perturbed by
an additional external force rotH × H which is governed by the linear system (1.2), and,
intuitively, can be not very regular. In other words, in such a way we relax the original
Navier-Stokes system in order to get more freedom in our search for solutions to the Navier-
Stokes system which allow the finite-time blow up.
The MHD system possess the same group of symmetries with respect to the natural scaling
as the original Navier-Stokes equations. This means that if we consider three functions
(v,H, p) satisfying the MHD system (1.1), (1.2) and construct for λ > 0 the functions

vλ(x, t) = λv(λx, λ2t), Hλ(x, t) = λH(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t)

then the functions (vλ, Hλ, pλ) form a solution to the MHD equations again. For the systems
with symmetries one of the natural ways to find a singular solution is to construct a self-
similar solution (i.e. a solution for which vλ = v, Hλ = H , and pλ = p) that blows up in
finite time. In the case of the MHD system a self-similar solution blowing up at the moment
of time t = t∗ is given by the formulas:

v(x, t) = λ(t)U(λ(t)x), p(x, t) = λ2(t)P (λ(t)x), H(x, t) = λ(t)B(λ(t)x),

where

λ(t) =
1

√

2(t∗ − t)
.

If (v,H, p) satisfy (1.1), (1.2) then the functions (U, P,B) must satisfy the stationary system
“of the MHD-type”:

−∆U + (x+ U) · ∇U + U + ∇P = B · ∇B
−∆B + (x+ U) · ∇B +B = B · ∇U

}

in R
3. (1.3)

Here we used notations (x+ U) · ∇U = (Ui,jUj + Ui,jxj).
The system (1.3) includes additional terms (x · ∇)U and (x · ∇)B that “shift” the linear
systems to the “spectral” area and make this system hard to analyze. Nevertheless, the
initial information on the functions (v,H, p) (such as, for example, the assumption on the
local boundedness of the energy) provides some information about the decay of (U,B, P ) at
infinity, and so, if the original MHD system had only smooth solutions then the functions
(U,B) must vanish identically.
The hypotheses on existence of a self-similar blow up solutions for the Navier-Stokes system
(i.e. in the case of H ≡ 0) was proposed by J. Leray [6] in 1934. This hypotheses was
controverted in 1996 by Necas, Růžička, and Šverak in [8]. In particular, in [8] they have
proved that any solution of the corresponding system

−∆U + (x+ U) · ∇U + U + ∇P = 0 (1.4)
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must vanish identically providing U ∈ L3(R
3). Later, in [13] Tsai generilized their result

by proving that the same assertion is true providing U ∈ Lq(R
3), for any q < +∞. The

approach of [8], [13] is based on the fact that if U satisfies (1.4) then the auxiliary Bernulli-
type function

Π(x) =
1

2
|U |2 + P + (x · U)

must satisfy the differential inequality

−∆Π + (x+ U) · ∇Π ≤ 0

and hence the following maximum principle holds:

max
|x|≤R

Π(x) ≤ max
|x|=R

Π(x) → 0, as R → ∞,

providing one can prove appropriate decay of U at infinity. This maximum principle happens
to be crucial steep for both approaches [8] and [13].
Unfortunately, for the system (1.2) we were not able to find an appropriate function Π to
provide the maximum principle for it. So, in the case of the MHD equations the method of
NRS seems to be not applicable.
An alternative proof of the result of [8] follows from the results of Escuriaza, Seregin, and
Šverak [2] on the regularity of the L3,∞– solutions to the Navier-Stokes system. Namely, de-
note by Ls,r(QT ) the anisotropic Lebegue space Ls,r(QT ) ≡ Lr(−T, 0;Ls(Ω)). It is clear that
the assumption U ∈ L3(R

3) provides the inclusion v ∈ L∞(−T, 0;L3(R
3)). But according to

[2] such solutions are necessary smooth and hence U must vanish identically. The advantage
of this approach is that it avoids usage of the maximum principle involved in [8] and [13].
In the present paper we adopt the method established in [2] for the MHD system. So, our
result can be interpreted in two ways: first we generalize the L3,∞– theory for the case of the
MHD and second we prove result on the absence of the self-similar blow up for the MHD
system which is analogues to the result of [8].
Denote by Q(R) the parabolic cylinder Q(R) := B(R) × (−R2, 0) and Q ≡ Q(1). Denote
also W 1,0

q (Q) := {w ∈ Lq(Q) : ∇w ∈ Lq(Q)}. The main results of the present paper are the
following two theorems:

Theorem 1.1 Assume v, H ∈ L2,∞(Q) ∩W 1,0
2 (Q), p ∈ L 3

2

(Q) satisfy (1.1), (1.2) in Q in
the sense of distributions. Assume additionally

v, H ∈ L3,∞(Q).

Then v, H are Hölder continuous on Q̄(1
2
).

Theorem 1.2 There are no nontrivial solutions to (1.3) with U , B ∈ L3(R
3).
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It can be interesting to compare our results with the following theorem of Ladyzhenskaya-
Prodi-Serrin- type (LPS- condition). The theorem below is the local version of results ob-
tained earlier in [14].

Theorem 1.3 Assume v, H ∈ L2,∞(Q) ∩ W 1,0
2 (Q), p ∈ L 3

2

(Q) satisfy (1.1), (1.2) in Q.
Assume additionally that v satisfies the Ladyzhenskaya-Prodi-Serrin condition:

v ∈ Ls,r(Q),
3

s
+

2

r
= 1, s > 3. (1.5)

Then v, H are Hölder continuous on Q̄(1
2
).

As we see, that there is a gap in the regularity theory between the critical and the non-
critical LPS- conditions for v. Namely, in the case of v ∈ Ls,r(Q) with 3

s
+ 2

r
= 1, s > 3 we

do not need any additional information on the magnetic field H besides H belongs to the
energy class L2,∞(Q) ∩W 1,0

2 (Q). In contrast, in the “critical” case v ∈ L3,∞(Q) we require
the additional inclusion H ∈ L3,∞(Q) to be satisfied. This phenomena is connected only
with the linear equation (1.2) and it is due to the lack of the absolute continuity of the L3,∞-
norm.

Our paper is organized as follows. In Section 2 we prove Theorem 1.3. In Section 3 we give
the notion of suitable weak solutions for the MHD equations and recall some known facts
concerning partial regularity for such solutions. In Section 4 we prove Theorem 1.1. Our
approach essentially follows to the method developed in [2].
In this paper we use the following notations:

• B(x0, R) := {x ∈ R
3 : |x − x0| < R}, BR ≡ B(R) := B(0, R), B := B(1),

Q(z0, R) := B(x0, R) × (t0 − R2, t0) for z0 = (x0, t0), Q := Q(0, 1),

• Π := R
3 × (−∞, 0), ΠT := R

3 × (−T, 0), QR,T := B(R) × (−T, 0),

• ∀ a, b ∈ R
n denote by a⊗ b the n× n- matrix (aibj),

• J1
q (Ω) := {w ∈W 1

q (Ω; R3) : divw = 0},
◦

J1
q(Ω) = J1

q (Ω) ∩
◦

W 1
q(Ω; R3),

J1
q,ν(Ω) = {w ∈ J1

q (Ω) : w · ν|∂ν = 0} (ν is the outer normal to ∂Ω),

• Ls,r(QT ) = Lr(−T, 0;Ls(Ω)), ‖f‖Ls,r(QT ) ≡
(

∫ 0

−T
‖f(·, t)‖r

Ls(Ω) dt
)1/r

,

• Ls,∞(QT ) = L∞(−T, 0;Ls(Ω)), ‖f‖Ls,∞(QT ) ≡ esssup
t∈(−T,0)

‖f(·, t)‖Ls(Ω),

• W 1,0
q (QT ) = {v,∇v ∈ Lq(QT )}, ‖u‖W 1,0

q (QT ) := ‖u‖Lq(QT ) + ‖∇u‖Lq(QT ),

• W 2,1
q (QT ) = {v ∈ W 1,0

q (QT ),∇2v, ∂tv ∈ Lq(QT )},
‖u‖W 2,1

q (QT ) := ‖u‖W 1,0
q (QT ) + ‖∇2u‖q,QT

+ ‖∂tu‖q,QT
.
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2 Proof of the LPS- condition

In this section we present the proof of Theorem 1.3

Lemma 2.1 Assume v satisfies (1.5) and H ∈ L2,∞(Q) ∩W 1,0
2 (Q) meets the identity

∂tH − ∆H = rot(v ×H).

Then

H ∈ L3,∞(Q(1
2
)), |H|

3

2 ∈W 1,0
2 (Q(1

2
)).

Proof: Let ζ ∈ C∞(Q̄) be a cut-off function such that ζ ≡ 1 on Q(1
2
) and ζ vanishes near

∂′Q. Denote by H̃ ≡ ζH . Then

∂tH̃ − ∆H̃ = rot(v × H̃) + F, (2.1)

where
F = H(∂tζ − ∆ζ) − 2(∇H)∇ζ + (v ×H) ×∇ζ.

By Hölder inequality we obtain

‖v ×H‖2
L2(B) ≤ C‖v‖2

Ls(B)‖H‖2
L 2s

s−2

(B) ≤ C

(

‖v‖r
Ls(B) + ‖H‖

2r
r−2

L 2s
s−2

(B)

)

.

By interpolation L2,∞(Q)∩W 1,0
2 (Q) ↪→ Ls1,r1

(Q) for any 3
s1

+ 2
r1

= 3
2

we obtain H ∈ Ls1,r1
(Q)

for any s1, r1 such that 3
s1

+ 2
r1

= 3
2
. In particular, we can take s1 = 2s

s−2
, r1 = 2r

r−2
as

3 s−2
2s

+ 2 r−2
2r

= 3
2
− 3

s
+ 1 − 2

r
= 5

2
−

(

3
s

+ 2
r

)

= 3
2
.

So, we conclude that v ×H ∈ L2(Q) and

‖F‖L2(Q) ≤ C
(

‖H‖L2(Q) + ‖v ×H‖L2(Q)

)

.

Multiplying (2.1) by |H̃|H̃ and integrating over R
3 we obtain

1

3

d

dt
‖H̃‖3

L3(B) +

∫

B

|H̃||∇H̃|2 dx ≤ C

∫

B

|v||H̃||∇H̃| dx+ C

∫

B

|F ||H̃|2 dx. (2.2)

By Hölder inequality we estimate

∫

B

|v||H̃||∇H̃| dx ≤
1

4

∫

B

|H̃||∇H̃|2 dx+ C

∫

B

|v|2|H̃|3 dx
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The second term in the RHS of the last inequality we again estimate by Hölder inequality:
∫

B

|v|2|H̃|3 dx ≤ ‖v‖2
Ls(B)‖H̃‖3

L 3s
s−2

(B).

Now define λ = 3
s
. Then λ ∈ (0, 1) and s−2

3s
= 1−λ

3
+ λ

9
. Using the interpolation inequal-

ity ‖H̃‖L 3s
s−2

(B) ≤ ‖H̃‖1−λ
L3(B)‖H̃‖λ

L9(B) with the help of the imbedding theorem ‖H̃‖
3

2

L9(B) =

‖|H̃|
3

2‖L6(B) ≤ C‖∇|H̃|
3

2‖L2(B) we arrive at the estimate
∫

B

|v|2|H̃|3 dx ≤ C‖v‖2
Ls(B)‖H̃‖

3(1−λ)
L3(B) ‖∇|H̃|

3

2‖2λ
L2(B)

Applying the Young inequality ab ≤ εap + Cεb
p′ with p = 1

λ
and p′ = 1

1−λ
we obtain

∫

B

|v|2|H̃|3 dx ≤
1

4

∫

B

|H̃||∇H̃|2 dx+ C‖v‖
2

1−λ

Ls(B)‖H̃‖3
L3(B)

Recalling that λ = 3
s

and 1−λ = 1− 3
s

= 2
r

and absorbing the terms containing
∫

|H̃||∇H̃|2 dx
into the left-hand side of (2.2) we finally obtain

1

3

d

dt
‖H̃‖3

L3(B) +

∫

B

|H̃||∇H̃|2 dx ≤ C‖v‖r
Ls(B)‖H̃‖3

L3(B) + C

∫

B

|F ||H̃|2 dx. (2.3)

To finish the proof of Lemma we need to estimate
∫

B

|F ||H|2 dx. By Hölder inequality we

get
∫

B

|F ||H̃|2 dx ≤ ‖F‖L2(B)‖H̃‖2
L4(B).

Taking µ = 3
8

so that 1
4

= 1−µ
3

+ µ
9
, using the interpolation inequality

‖H̃‖L4(B) ≤ C‖H̃‖1−µ
L3(B)‖H̃‖µ

L9(B) ≤ C‖H̃‖1−µ
L3(B)‖∇|H̃|

3

2‖
2µ
3

L2(B)

we get
∫

B

|F ||H̃|2 dx ≤ ‖F‖L2(B)‖H̃‖
5

4

L3(B)‖∇|H̃|
3

2‖
1

2

L2(B).

Applying the Young inequality ab ≤ εap + Cεb
p′ with p = 4 and p′ = 4

3
we obtain

∫

B

|F ||H̃|2 dx ≤
1

4

∫

B

|H̃||∇H̃|2 dx+ C‖F‖
4

3

L2(B)‖H̃‖
5

3

L3(B)
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Absorbing the term 1
4

∫

B

|H̃||∇H̃|2 dx into the left hand side of (2.3) and using the estimate

‖F‖
4

3

L2(B)‖H̃‖
5

3

L3(B) ≤ C(‖F‖2
L2(B) + 1)(‖H̃‖3

L3(B) + 1) we obtain from (2.3) the inequality

1

3

d

dt
‖H̃‖3

L3(B) +

∫

B

|H̃||∇H̃|2 dx ≤ C0

(

‖v‖r
Ls(B) + ‖F‖2

L2(B) + 1
)

‖H̃‖3
L3(B) + C,

from which the result follows by the Gronwall lemma. Lemma 2.1 is proved.

Remark 2.1 From Lemma 2.1 by interpolation L3,∞(Q)∩L9,3(Q) ↪→ Ls2,r2
(Q) with any s2,

r2 satisfying 3
s2

+ 2
r2

= 1 we conclude that H belongs to the LPS- class with any s2, r2:

H ∈ Ls2,r2
(Q),

3

s2

+
2

r2
= 1, s2 ≥ 3.

In particular, we can take s2 = r3 = 5 or s2 = s, r2 = r where s and r are fixed in Theorem
1.3.

Lemma 2.2 Assume v, H ∈ L2,∞(Q)∩W 1,0
2 (Q), p ∈ L 3

2

(Q) satisfy the MHD system in Q:

∂tv + (v · ∇)v − ∆v + ∇p = rotH ×H
div v = 0

∂tH − ∆H = rot(v ×H)
divH = 0















in Q. (2.4)

Assume additionally that v and H satisfy the LPS conditions:

v ∈ Ls1,r1
(Q), H ∈ Ls2,r2

(Q),

where
3

si
+

2

ri
= 1, si > 3, i = 1, 2.

Then v and H are Hölder continuous on Q̄(1
2
).

Proof: The proof of Lemma 2.2 is similar to the proof of the corresponding result for the
Navier-Stokes system and the heat equation, see, for example, [11], [10] and reference there.
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3 ε- Regularity Conditions

Existence of weak solutions (analogues to the Leray-Hopf solutions for the NSE) to various
initial-boundary value problems for the MHD system was obtained by O.A. Ladyzhenskaya
and V.A. Solonnikov in [5]. Originally these solutions provide no information about pressure.
By small improvement of arguments of [5] (involving coercive estimates for the linearization
of the MHD system) it is not difficult to prove existence of analogues of the so-called suit-
able weak solutions to the MHD system (the notion of suitable weak solution for the NSE
equations was introduced by Scheffer [9], see also [1]).

Definition. The functions (v,H, p) are the suitable weak solution to the MHD system in
QT = Ω × (−T, 0) iff for any compact domain Ω′

b Ω and any T ′ < T , Q′
T = Ω′ × (−T ′, 0)

v ∈ L2,∞(Q′
T ) ∩W 1,0

2 (Q′
T ), p ∈ L3/2(Q

′
T ),

the equations (1.1), (1.2) are satisfied in QT in the sense of distributions, and, moreover, the
following Local Energy Inequality holds

∫

Ω

(|v(x, t)|2 + |H(x, t)|2) ζ(x, t) dx+
t
∫

−T

∫

Ω

(|∇v|2 + |∇H|2) ζ dxdt′ ≤

≤
∫

QT

(|v|2 + |H|2) (∂tζ + ∆ζ) dxdt′+

+
∫

QT

(|v|2 + |H|2 + 2p) v · ∇ζ dxdt′ − 2
∫

QT

(v ·H)(v · ∇ζ) dxdt′,

(3.1)

for a.e. t ∈ (−T, 0) and all ζ ∈ C∞
0 (Ω × (−T, 0]), ζ ≥ 0.

One of the pleasant properties of suitable weak solutions is that they have locally integrable
first time and second spatial derivatives, i.e.

v, H ∈W 2,1
5

4
,loc

(QT ), p ∈W 1,0
5

4
,loc

(QT ).

In particular, these means that v and H ∈ C((−T, 0];L 5

4
,loc(Ω)). If we assume additionally

that v or H belongs to the space L∞(−T, 0;Lq(Ω)) with some q > 5
4
, then these function

can be redefined on a set of moments of time of measure zero in such a way that v or H
become continuous in time with values in Lq(Ω

′) equipped by the weak topology, i.e for any
w ∈ Lq′(Ω

′) the function

t 7→

∫

Ω′

v(x, t) · w(x) dx



or

∫

Ω′

H(x, t) · w(x) dx



 is continuous.

In particular, this means that suitable weak solutions belonging to the class L∞(−T, 0;Lq(Ω))
have values in Lq(Ω

′) for EVERY moment of time. Below we always assume that our suitable
weak solutions have this property from the very beginning.
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For suitable weak solutions to the MHD system it is possible to obtain the following ε-
regularity theorem:

Theorem 3.1 There is an absolute constant ε∗ > 0 with the following property. For any
suitable weak solution (v, p,H) of the system (1.1), (1.2) in Q(z0, R0) if for some R ≤ R0

1

R2

∫

Q(z0,R)

(

|v|3 + |H|3 + |p|
3

2

)

dxdt < ε∗,

then v and H are Hölder continuous on Q̄(z0,
R
2
).

Theorem 3.2 There is an absolute constant ε0 > 0 with the following property. Let (v, p,H)
be a suitable weak solution of the system (1.1), (1.2) in Q(z0, R) and assume additionally
that one of the following two condition holds:

either lim sup
ρ→0

sup
t∈(t0−ρ2,t0)

1

ρ

∫

B(x0,ρ)

(

|v|2 + |H|2
)

dx < ε0, (3.2)

or lim sup
ρ→0

1

ρ

∫

Q(z0,ρ)

(

|∇v|2 + |∇H|2
)

dx < ε0. (3.3)

Then there is ρ∗ ≤ R such that v and H are Hölder continuous on Q̄(z0,
ρ∗
2
).

Theorem 3.3 Let (v,H, p) be a suitable weak solution of the MHD system in Q(z0, R) and
assume additionally v, H are Hölder continuous on Q(z0, R). Then for any k ∈ N the
functions ∇kv, ∇kH are Hölder continuous on Q(z0,

R
2
) and

sup
z∈Q(z0, R

2
)

(

|∇kv| + |∇kH|
)

≤
Ck

Rk

The proofs of Theorem 3.1 — Theorem 3.3 can be obtained by the routine reproduction of
the corresponding arguments for the NSE equations, see, for example, [1], [2], [4], [7].

4 Proof of Theorem 1.1

Obviously, it is sufficient to prove Hölder continuity of v and H near the origin. By contra-
diction, we assume that (0, 0) is not a regular point for v, H . Then by Theorem 3.2 there is
a sequence Rk → 0 such that

sup
t∈(−R2

k ,0)

1

Rk

∫

B(Rk)

(

|v|2 + |H|2
)

dx ≥ ε∗. (4.1)
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Extend functions (v, p,H) outside Q by zero and denote by vk, pk and Hk the following
functions:

vk(y, s) = Rk v(Rky, R
2
ks), Hk(y, s) = Rk H(Rky, R

2
ks),

pk(y, s) = R2
k p(Rky, R

2
ks).

The functions (vk, Hk, pk) satisfy the equations (1.1), (1.2) in Q(1/Rk) and, moreover, thanks
to (4.1)

sup
s∈(−1,0)

∫

B

(

|vk|2 + |Hk|2
)

dy ≥ ε∗. (4.2)

It turns out that the sequence (vk, Hk, pk) has a subsequence that converges in the appro-
priate sense to some limit functions (v0, H0, p0) which are the global solution to the MHD
system (i.e. they satisfy the MHD system in R

3 × (−∞, 0)):

Lemma 4.1 There exist and a subsequence (vkj , Hkj , pkj) and the functions (v0, H0, p0)
which are a suitable weak solution of the MHD equations (1.1), (1.2) in Π ≡ R

3 × (−∞, 0)
such that

v0, H0 ∈ L3,∞(Π), p0 ∈ L 3

2
,∞(Π), (4.3)

vkj
∗
⇀ v0 and Hkj

∗
⇀ H0 in L3,∞(Π), (4.4)

and for any bounded domain Ω b R
3 and any T > 0

v0 ∈W 1,0
2 (Ω × (−T, 0)) ∩W 2,1

4

3

(Ω × (−T, 0)) ∩ C([−T ; 0];L2(Ω)), (4.5)

pkj ⇀ p0 in L 3

2

(Ω × (−T, 0)), (4.6)

vkj → v0 and Hkj → H0 in C([−T ; 0];L2(Ω)), (4.7)

vkj → v0 and Hkj → H0 in L3(Ω × (−T, 0)). (4.8)

Moreover, the functions (v0, H0, p0) have the following property:

v0(y, 0) = 0, H0(y, 0) = 0, for a.e. y ∈ R
3. (4.9)

The proof of Lemma 4.1 essentially repeats the arguments of the paper [2]. We present the
proof Lemma 4.1 below just for the reader’s convenience.

Convergence (4.7) makes it possible to pass to the limit in the inequality (4.2). So we obtain
the bound from below

sup
s∈(−1,0)

∫

B

(

|v0|2 + |H0|2
)

dy ≥ ε∗. (4.10)

The principal result of our work is the following lemma:
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Lemma 4.2 Assume functions (v0, H0, p0) are a suitable weak solution of the MHD system
in ΠT0

≡ R
3 × (−T0, 0), T0 > 2, and assume conditions (4.3), (4.5), (4.9) hold. Then

v0 ≡ 0, H0 ≡ 0 a.e. in ΠT0−1.

As soon as Lemma 4.2 is established, it provides the contradiction with (4.10). Hence the
result of Theorem 1.1 follows.

Proof of Lemma 4.1. From the obvious estimate

‖vk‖L3,∞(Π) + ‖Hk‖L3,∞(Π) ≤ ‖v‖L3,∞(Q) + ‖H‖L3,∞(Q) ≤ C (4.11)

we obtain convergence (4.4) as well as the first two inclusions in (4.3). Taking divergence of
the equation (1.1) and taking into account the identity

rotH ×H = (H · ∇)H −
1

2
∇|H|2 (4.12)

we obtain the relation for pressure

∆p = div div(H ⊗H − v ⊗ v) −
1

2
∆|H|2.

We split pressure as
p = p1 + p2,

where p1 is defined as the solution to the following boundary-value problem:
∫

B

p1∆ψ dx =

∫

B

(

(H ⊗H − v ⊗ v) : ∇2ψ −
1

2
|H|2∆ψ

)

dx,

for a.e. t ∈ (−1, 0) and all ψ ∈ W 2
3 (B) ∩

◦

W 1
3(B). By an appropriate choice of the test

function ψ we obtain the following estimate for p1:

‖p1‖L 3
2

,∞
(Q) ≤ C

(

‖H‖2
L3,∞(Q) + ‖v‖2

L3,∞(Q)

)

.

On the other hand, for a.e. t ∈ (−1, 0) the function p2(·, t) is harmonic. Hence p2 ∈
L 3

2

(−1, 0, L∞(B(5
6
))) and ‖p2(·, t)‖L∞(B( 5

6
)) ≤ c‖p2(·, t)‖L 3

2

(B). So, we obtain the estimate for
p2:

‖p2‖L 3
2

(−1,0,L∞(B( 5

6
))) ≤ C

(

‖v‖2
L3,∞(Q) + ‖H‖2

L3,∞(Q) + ‖p‖L 3
2

(Q)

)

.

Splitting now the functions pk in the same way, pk = pk
1+p

k
2, where pk

j (y, s) = R2
kpj(Rky, R

2
ks),

j = 1, 2, for any Ω b R
3 we obtain estimates

‖pk
1‖L 3

2
,∞

(Π) ≤ ‖p1‖L 3
2

,∞
(Q) ≤ C,
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‖pk
2‖L 3

2

(−∞,0;L∞(Ω)) ≤ Rk‖p2‖L 3
2

(−1,0;L∞(B( 5

6
))) → 0, as Rk → 0.

From the estimate for pk
1 we obtain existence of p0 ∈ L 3

2
,∞(Π) such that pk

1
∗
⇀ p0 in L 3

2
,∞(Π).

Taking into account the estimate for pk
2 we obtain (4.6).

Let us prove now inclusions (4.5). Take an arbitrary ζ ∈ C∞
0 (R3×R) and consider ζk(x, t) =

ζ( x
Rk ,

t
R2

k
). Choose k large enough so that supp ζk

b B × (−1, 1). Substituting ζk into the

Local Energy Inequality (3.1) and making change of variables y = x
Rk

, s = t
R2

k
, we arrive at

the relation

∫

R3

(

|vk(y, s)|2 + |Hk(y, s)|2
)

ζ(y, s) dy +
s
∫

−∞

∫

R3

(

|∇yv
k|2 + |∇yH

k|2
)

ζ dyds ≤

≤
∫

Π

(

|vk|2 + |Hk|2
)

(∂sζ + ∆yζ) dyds+

+
∫

Π

(

|vk|2 + |Hk|2 + 2pk
)

vk · ∇yζ dyds+

−2
∫

Π

(vk ·Hk)(vk · ∇yζ) dyds,

(4.13)

that holds for a.e. s < 0, for any ζ ∈ C∞
0 (R3 × R) and for k large enough. It is easy to see

that the RHS of (4.13) can be estimated by L3- norms of vk, Hk, and L 3

2

- norm of pk. Hence

taking an arbitrary Ω b R
3 and T > 0 after appropriate choice of ζ we obtain the estimate

‖vk‖W 1,0
2

(Ω×(−T,0)) + ‖Hk‖W 1,0
2

(Ω×(−T,0)) ≤ C, (4.14)

from which the first inclusion in (4.5) follows. The estimates (4.14), (4.11), and the in-
terpolation result L3,∞(QT ) ∩W 1,0

2 (QT ) ↪→ L4(QT ) provide boundedness of vk and Hk in
L4(Ω × (−T, 0)). By Hölder inequality we obtain that all bilinear terms

rotHk ×Hk, (vk · ∇)vk, rot(vk ×Hk) ≡ (Hk · ∇)vk − (vk · ∇)Hk

are bounded in L 4

3

(Ω × (−T, 0)). Considering bilinear terms as given external forces and
applying coercive estimates for the linear Stokes and the heat equations, for an arbitrary
Ω′

b Ω and T ′ ∈ (0, T ) we derive the estimate

‖vk‖W 2,1
4
3

(Ω′×(−T ′,0)) + ‖Hk‖W 2,1
4
3

(Ω′×(−T ′,0)) + ‖∇pk‖L 4
3

(Ω′×(−T ′,0)) ≤ C, (4.15)

from which the second assertion in (4.5) follows. (To simplify our notations below we will
omit prime and we will use notation Ω and (−T, 0) for an arbitrary domain and arbitrary
time interval, passing to smaller domains when necessary, but keeping the same notations
for them).
In particular, from (4.15) and the imbedding

W 2,1
4

3

(Ω × (−T, 0))
comp
↪→ C([−T, 0];L 4

3

(Ω))
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we obtain strong convergence vk → v0 and Hk → H0 in C([−T, 0];L 4

3

(Ω)). In [2] it was
shown that the following imbedding is true:

C([−T ; 0];L 4

3

(Ω)) ∩ L∞(−T, 0;L3(Ω)) ↪→ C([−T ; 0];L2(Ω))

‖w‖C([−T,0];L2(Ω)) ≤ c‖w‖
2

5

C([−T,0];L 4
3

(Ω))‖w‖
3

5

L∞(−T,0;L3(Ω))

and hence vk, Hk, v0, H0 ∈ C([−T, 0];L2(Ω)). Moreover, from the relation

‖vk − v0‖C([−T,0];L2(Ω)) ≤ c‖vk − v0‖
2

5

C([−T,0];L 4
3

(Ω))×

×
(

‖vk‖
3

5

L3,∞(Ω×(−T,0)) + ‖v0‖
3

5

L3,∞(Ω×(−T,0))

)

the last assertion in (4.5) and convergence (4.6) follow. Finally, convergence (4.8) follows
from the fact that the sequences vk and Hk are bounded in L4(Ω× (−T, 0)) and precompact
in L2(Ω× (−T, 0)). Using (4.8) we can pass to the limit in (4.13) and in the MHD equations
for (vk, Hk, pk). So, we conclude that the limit functions (v0, H0, p0) are a suitable weak
solution of the MHD equations in Π.
Let us prove (4.9). For any x∗ ∈ R

3 we have

‖v0(·, 0)‖L2(B(x∗,1)) ≤ ‖vk(·, 0) − v0(·, 0)‖L2(B(x∗ ,1)) + ‖vk(·, 0)‖L2(B(x∗,1)) ≤

≤ ‖vk − v0‖C([−T,0];L2(B(x∗,1)) +R
−1/2
k ‖v(·, 0)‖L2(B(Rkx∗,Rk))

For the last term due to Hölder inequality we have the following estimate:

R
−1/2
k ‖v(·, 0)‖L2(B(Rkx∗,Rk)) ≤ C‖v(·, 0)‖L3(B(Rkx∗,Rk)) → 0 as Rk → 0.

(We remind here that we assume v(·, t) ∈ L3(B) for every t ∈ [−T, 0]). So, the first assertion
in (4.9) follows from (4.7) and absolute continuity of Lebegue integral. The identity (4.9)
for H0 follows in the same way. Lemma 4.1 is proved.

Proof of Lemma 4.1, Part I. Let T = T0 − 1. From Theorem 3.1 we conclude that there
exist a cylinder QR1,T ≡ B(R1) × (−T ; 0) such that all spatial derivatives of v0 and H0 are
bounded and Hölder continuous on ΠT \QR1,T . Let us fix some of these bounds:

‖v0‖L∞(ΠT \QR1,T ) + ‖H0‖L∞(ΠT \QR1,T ) ≤M0,

‖∇v0‖L∞(ΠT \QR1,T ) + ‖∇H0‖L∞(ΠT \QR1,T ) ≤M1,

‖∇2v0‖L∞(ΠT \QR1,T ) + ‖∇2H0‖L∞(ΠT \QR1,T ) ≤ M2.

Moreover, for a.e. t ∈ (−T, 0) the pressure p0(·, t) ∈ L3/2(R
3) satisfies the identity

∆p0 = div div(H0 ⊗H0 − v0 ⊗ v0) −
1

2
∆|H0|2.
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As the norm ‖p0(·, t)‖L3/2(R3) is bounded with respect to t ∈ (−T, 0) for any k ∈ N the
following assertion holds:

∇kp0, ∂t∇
k−1v0 are locally bounded in ΠT \QR1,T . (4.16)

Our basic tools are the following propositions on the unique continuation for the heat oper-
ator, see [2], [3]:

Proposition 4.1 Assume there exist R > 0, T > 0 such that W ∈ W 2,1
2,loc(ΠT \ QR,T ; Rk)

satisfies the following conditions

∃ M > 0 : |∂tW − ∆W | ≤M
(

|W | + |∇W |
)

a.e. in ΠT \QR,T ,

∃ C > 0 : |W (x, t)| ≤ eC|x|2 a.e. in ΠT \QR,T ,

W (·, 0) = 0 a.e. in R
n \BR.

Then W ≡ 0 a.e. in ΠT \QR,T .

Proposition 4.2 Assume there exist R > 0, T > 0 such that W ∈W 2,1
2,loc(QR,T ; Rk) satisfies

the inequality

∃ M > 0 : |∂tW − ∆W | ≤ M
(

|W | + |∇W |
)

a.e. in QR,T .

Assume also that for some cylinder Q̃ ≡ B(x0, ρ) × (t1, t2) ⊂ QR,T

W ≡ 0 a.e. in Q̃.

Then W ≡ 0 a.e. in B(R) × (t1, t2).

While the magnetic field satisfies the parabolic equation

∂tH
0 − ∆H0 = (H0 · ∇)v0 − (v0 · ∇)H0.

from the very beginning, for the velocity filed v0 we have only the Stokes-type system,
for which to the best of our knowledge the results on the unique continuation similar to
Propositions 4.1, 4.2 are unknown. So, to eliminate the pressure and to get a parabolic
equation we take rot of (1.1) and obtain the system for ω0 ≡ rot v0. Our main goal is to
control the structure of weak terms we obtain under this operation. We denote by J0 =
rotH0, we also use representation (4.12) and the relation rot(v0 ×H0) = (H0 · ∇)v0 − (v0 ·
∇)H0:

∂tω
0 − ∆ω0 = (ω0 · ∇)v0 − (v0 · ∇)ω0 + (H0 · ∇)J0 − (J0 · ∇)H0.
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As the RHS of this equation includes the term (H0 · ∇)J0 which contains the second deriva-
tives of H0 we have to differentiate also the magnetic equation:

∂tH
0
,k − ∆H0

,k = (H0
,k · ∇)v0 + (H0 · ∇)v0

,k − (v0
,k · ∇)H0 − (v0 · ∇)H0

,k

Let us introduce the new 15-component vector W = (H0, ω0, H0
,1, H

0
,2, H

0
,3) and also (to make

our considerations more observable) we introduce three auxiliary vector functions consisting
of some components of W : the 3-component vector W (0) = H0, the 3-component vector
W (1) = ω0 and the 9-component vector W (2) = (H0

,1, H
0
,2, H

0
,3)

Thanks to our equations it is easy to see that this vector-functions satisfy the differential
inequalities in ΠT \QR1,T :

|∂tW
(0) − ∆W (0)| ≤M1|W

(0)| +M0|W
(1)|,

|∂tW
(1) − ∆W (1)| ≤ M1|W

(1)| +M0|∇W
(1)| +M2|W

(0)| +M1|W
(2)|,

|∂tW
(2) − ∆W (2)| ≤ M1|W

(2)| +M2|W
(0)| +M1|W

(2)| +M0|∇W
(2)|,

Combining these three inequalities we arrive at the differential inequality forW = (W (0),W (1),W (2)):

|∂tW − ∆W | ≤ CM0,M1,M2

(

|W | + |∇W |
)

in ΠT \QR1,T .

Moreover, as identities (4.9) hold and the functions v0(·, 0) and H0(·, 0) are smooth on
R

3 \BR1
, differentiating these relations we arrive at

W (x, 0) = 0 for x ∈ R
3 \BR1

.

Applying Proposition 4.1 we obtain the identity

W ≡ 0 in ΠT \QR1,T .

Proof of Lemma 4.1, Part II.

At this step of the proof we already know that the functions v0, H0 possess the following
properties:

• rot v0 = 0, div v0 = 0, and hence ∆v0 = 0 on ΠT \QR1,T .

• H0 ≡ 0 on ΠT \QR1,T .

• ∇kv0 are bounded and Hölder continuous on ΠT \QR1,T for any k ∈ N.

• v0, H0 ∈ L3,∞(ΠT ), p0 ∈ L 3

2
,∞(ΠT ) satisfy the MHD system in ΠT .
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So, roughly speaking, we have shown at this step that for every moment of time our function
W has a compact support. Our next goal is to show that W must vanish identically in
ΠT . Unfortunately, due to the lack of smoothness of the original functions v0 and H0, the
function W is not even well-defined inside QR1,T . We are going to show that for almost every
t0 ∈ (−T, 0) there is a strip (t0, t0 + δ0) with some δ0 = δ0(t0) > 0 such that v0 and H0 are
sufficiently smooth (and hence W is well-defined) in this strip.
Take R2 = R1 + 1 and R3 = R2 + 1. Consider the cut-off function ζ ∈ C∞

0 (BR3
) such that

ζ ≡ 1 on BR2
. We introduce functions

u = ζv0, q = ζp0, H = H0.

(We have redenote here H0 by H just to simplify our notation). It is easy to see that (u,H, q)
satisfy the identities:

∂tu− ∆u+ div(u⊗ u) + ∇q = rotH ×H + F
div u = v0 · ∇ζ

}

in ΠT ,

∂tH − ∆H = rot(u×H)
divH = 0

}

in ΠT ,

u|∂BR3
= 0, Hν |∂BR3

= 0, (rotH)tan|∂BR3
= 0,

where ν is the outer normal to ∂BR3
, Hν = H · ν, (rotH)tan = rotH × ν,

F = −2(∇v0)∇ζ − v0∆ζ + (ζ2 − ζ) div(v0 ⊗ v0) + (v0 ⊗ v0)∇ζ + p0∇ζ.

We remark that thanks to the condition suppH ⊂ Q̄R1,T we have the identities ζ rotH ×
H = rotH × H and (v0 × H) × ∇ζ = 0. Note also that the function F and all its spatial
derivatives are bounded on ΠT .
To improve the divergence-free conditions for u we introduce for a.e. t ∈ (−T, 0) the functions
(w(·, t), r(·, t)) which are the solution to Stokes-type problem:

−∆w + ∇r = 0, divw = g ≡ v0 · ∇ζ in BR3
,

w|∂BR3
= 0.

(4.17)

From the elliptic theory it is well-known (see [12]) that the functions (w, r) satisfy the
estimate for any k ≥ 0:

‖w‖W k+2

2
(BR3

) + ‖r‖W k+1

2
(BR3

) ≤ C‖g‖W k+1

2
(BR3

).

Taking the derivative of the equations (4.17) with respect to t we get the analogues estimate
for ∂tw:

‖∂tw‖W k+2

2
(BR3

) + ‖∂tr‖W k+1

2
(BR3

) ≤ C‖∂tg‖W k+1

2
(BR3

).
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Taking into account (4.16) and the fact that the function g ≡ v0 · ∇ζ is supported on
QR3,T \QR2,T we conclude that for any k ∈ N

∂t∇
k−1w ∈ L∞(QR3,T ), ∇kw ∈ Cα, α

2 (Q̄R3,T ). (4.18)

Let us represent u and q as the sums

u = U + w, q = P + r

where U , P and H satisfy the relations

∂tU − ∆U + div(U ⊗ U) + div(U ⊗ w)+

+ div(w ⊗ U) + ∇P = F̃ + rotH ×H
divU = 0







in QR3,T , (4.19)

∂tH − ∆H − rot(w ×H) = rot(U ×H)
divH = 0

}

in QR3,T , (4.20)

U |∂BR3
= 0, Hν |∂BR3

= 0, (rotH)tan|∂BR3
= 0, (4.21)

where
F̃ = F − ∂tw − div(w ⊗ w).

As U , H ∈ L2(−T, 0;W 1
2 (BR3

)) hence there is a set E ⊂ [−T, 0] such that meas{[−T, 0] \
E} = 0 and for any t0 ∈ E the inclusions U(·, t0), H(·, t0) ∈ W 1

2(BR3
) hold. Let us fix

t0 ∈ E. Note also that thanks to (4.18) the function F̃ and the coefficient w in the system
(4.19), (4.20) are bounded in QR3,T together with all their spatial derivatives.
Due to the well-posedness of the system (4.19), (4.20), (4.21) for the initial data U(t0) ∈
◦

J1
2(BR3

) andH(t0) ∈ J1
2,ν(BR3

) (see [5]) we conclude that for any t0 ∈ E there is δ = δ(t0) > 0
such that

U, H ∈ W 2,1
2 (BR3

× (t0, t0 + δ)).

Hence for any k ∈ N the functions ∇kU , ∇kH are locally Hölder continuous on an open strip
R

3 × (t0, t0 + δ) and thanks to (4.18) the same is true for ∇kv. Now we can take rot of the
NSE equation and obtain the differential inequality

|∂tW − ∆W | ≤M∗ (|W | + |∇W |)

for the 15-component vector function W introduced in Part I. This inequality holds in the
strip R

3 × [t1, t1 + δ1] for any (t1, t1 + δ1) b (t0, t0 + δ) with the constant M∗ depending on t1,
δ1. Taking into account the identity W ≡ 0 a.e. in ΠT \QR1,T and applying Proposition 4.2
we conclude that W ≡ 0 on R

3×[t1, t1+δ1]. Hence for every t ∈ [t1, t1+δ1] the function v(·, t)
is harmonic in R

3 and, moreover, it belongs to L3(R
3). So we conclude that the function v

vanishes identically on [t1, t1+δ1]. As t1 ∈ (t0, t0+δ) is arbitrary due to the strong continuity
of v with values in L 4

3

(BR3
) we obtain v(·, t0) ≡ 0. This implies that v(·, t0) = 0 for any

t0 ∈ E. Lemma 4.2 is proved.
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