@article{SEDP_2002-2003____A24_0, author = {L\'eandre, R\'emi}, title = {Malliavin {Calculus} for a general manifold}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:24}, pages = {1--12}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {1060.58025}, mrnumber = {2030719}, language = {en}, url = {http://www.numdam.org/item/SEDP_2002-2003____A24_0/} }
TY - JOUR AU - Léandre, Rémi TI - Malliavin Calculus for a general manifold JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:24 PY - 2002-2003 SP - 1 EP - 12 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2002-2003____A24_0/ LA - en ID - SEDP_2002-2003____A24_0 ER -
%0 Journal Article %A Léandre, Rémi %T Malliavin Calculus for a general manifold %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:24 %D 2002-2003 %P 1-12 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2002-2003____A24_0/ %G en %F SEDP_2002-2003____A24_0
Léandre, Rémi. Malliavin Calculus for a general manifold. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 24, 12 p. http://www.numdam.org/item/SEDP_2002-2003____A24_0/
[A.K.S] Aida S. Kusuoka S. Stroock D.W.: On the support of Wiener functionals. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. Elworthy K.D. Kusuoka S. Ikeda N. edit. Pitman Res. Math. Series. 284 (1993), 3-34. | Zbl
[A] Alexopoulos G.: Sub-Laplacians with drift on Lie groups of polynomial volume growth. Memoirs A.M.S 739 (2002). | MR | Zbl
[Az] Azencott R.: Grandes déviations et applications. Ecole de Probabilités de Saint-Flour VIII. P. Hennequin edit. L.N.M. 774 (1980), 1-176. | MR | Zbl
[B.P] Bally V. Pardoux E.: Malliavin Calculus for white noise driven parabolic S.P.D.E.S. Potential Analysis. 9.1. (1998), 27-64. | MR | Zbl
[BA1] en Arous G.: Développement asymptotique du noyau de la chaleur hors du cut-locus. Ann. Sci. Eco. Norm. Sup. 21 (1988), 307-331. | Numdam | MR | Zbl
[BA2] Ben Arous G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier. 39 (1989), 73-99. | Numdam | MR | Zbl
[BA.L] Ben Arous G. Léandre R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Prob. Th. Rel. Fields. 90 (1991), 372-402. | MR | Zbl
[Bi] Bismut J.M.: Large deviations and the Malliavin Calculus. Progress in Math. 45. Birkhauser (1984). | MR | Zbl
[C.K.S] Carlen E. Kusuoka S. Stroock D.W.: Upper bounds for symmetric transition functions. Ann. Inst. Henri. Poincaré. 23 (1987), 145-187. | Numdam | MR | Zbl
[D] Davies E.B.: Heat kernel and spectral theory. Cambridge Tracts in Math. 92 (1990). | MR | Zbl
[F.L] Florchinger P. Léandre R.: Décroissance non exponentielle du noyau du noyau de la chaleur. Prob. Th. Rel. Fields. 95 (1993), 237-267. | MR | Zbl
[F] Fournier N.: Strict positivity of the solution to a 2-dimensional spatially homogeneous equation with cuttoff. Ann. Inst. Henri. Poincaré. Probab. stat. 31.4. (2001), 481-502. | EuDML | Numdam | MR | Zbl
[F.W] Freidlin M.I. Wentzell A.D.: Random perturbations of dynamical systems. Springer. (1984). | MR | Zbl
[Ga] Gaveau B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta. Math. 139 (1977), 95- 153. | MR | Zbl
[H] Hoermander L.: Hypoelliptic second order equation. Acta. Math. 119 (1967), 147-171. | MR | Zbl
[I.W] Ikeda N. Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981). | MR | Zbl
[J.L] Jones J.D.S. Léandre R.: A stochastic approach to the Dirac operator over the free loop space. In “Loop spaces and groups of diffeomorphisms”. Proc. Steklov. Inst. 217 (1997), 253-282. | Zbl
[J.S] Jerison D. Sanchez A.: Subelliptic second order differential operator. In “Complex analysis. III” Berenstein E. Ed. L.N.M. 1227 (1987), 46-78.
[Ku] Kusuoka S.: More recent theory of Malliavin Calculus. Sugaku 5 (1992), 155-173. | MR | Zbl
[L1] Léandre R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Ana. 74 (1987), 399-414. | Zbl
[L2] Léandre R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Prob. Th. Rel. Fields. 74 (1987), 289-294. | Zbl
[L3] Léandre R.: Intégration dans la fibre associée a une diffusion dégénérée. Prob .Th. Rel. Fields. 76 (1987), 341-358. | MR | Zbl
[L4] Léandre R.: Appliquations quantitatives et qualitatives du Calcul de Malliavin. In “French-Japanese Seminar”. M. Métivier S. Watanabe edt. L.N.M. 1322 (1988), 109-133. English translation: in “Geometry of random motion”. R. Durrett M. Pinsky edit. Contemporary Math 75 (1988), 173-197. | Zbl
[L5] Léandre R.: Volume de boules sous-Riemanniennes et explosion du noyau de la chaleur au sens de Stein. Séminaire de Probabilités XXIII Azéma J. Meyer P.A. edit. L.N.M. 1372 (1989). | EuDML | Numdam | MR | Zbl
[L6] Léandre R.: Strange behaviour of the heat kernel on the diagonal. In “Stochastic processes, physics and geometry”. S. Albeverio edit. World Scientific (1990), 516-527.
[L7] Léandre R.: Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math. 4 (1992), 45-75. | EuDML | Zbl
[L8] Léandre R.: A simple proof of a large deviation theorem. In “Stochastic analysis”. D. Nualart, M. Sanz-Solé edit. Prog. Prob. 32 Birkhauser (1993), 72-76. | Zbl
[L9] Léandre R.: Brownian motion over a Kaehler manifold and elliptic genera of level N. In “Stochastic analysis and applications in Physics”. R. Sénéor L. Streit edt. Nato Asie Series. 449 (1994), 193-219.
[L10] Léandre R.: Uniform upper bounds for hypoelliptic kernels with drift. J. Math. Kyoto. Univ. 34 (1994), 263-271. | MR | Zbl
[L11] Léandre R.: Positivity theorem for a general manifold. Preprint (2002). | MR
[L12] Léandre R.: Positivity theorem for a stochastic delay equation on a manifold. To be published in the proceedings of the 8-th conference of Vilnius (2002. V. Paulauskas edit). Acta. Appli. Mathe. | MR | Zbl
[L13] Léandre R.: Stochastic Mollifier and Nash inequality. To be published in the proceedings of the satellite conference of stochastic Analysis of I.C.M. 2002 (Ma Z.M Roeckner M. edit). | MR | Zbl
[Ma] Malliavin P.: Stochastic Calculus of variation and hypoelliptic operators. In “Stochastic analysis” Itô K. edt. Kinokuyina (1978), 155-263. | Zbl
[Me] Meyer P.A.: Le Calcul de Malliavin et un peu de pédagogie. R.C.P. 25. Volume 34. Publ. Univ. Strasbourg (1984), 17-43.
[M.S] Millet A. Sanz-Solé M.: Points of positive density for the solution to a hyperbolic S.P.D.E. Potential Analysis. 7.3. (1997), 623-659. | MR | Zbl
[Mo] Molchanov S. : Diffusion processes and Riemannian geometry. Russ. Math. Surveys. 30 (1975), 1-63. | MR | Zbl
[N] Norris J.: Simplified Malliavin Calculus. Séminaire de Probabilités XX. Azéma J., Yor M. edit. L.N.M. 1204 (1986), 101-130. | EuDML | Numdam | MR | Zbl
[Nu] Nualart D.: The Malliavin Calculus and related topics. Springer (1995). | MR | Zbl
[T] Takanobu S.: Diagonal short time asymptotics of heat kernels for certain second order differential operator of Hoermander type. Public. RIMS. Kyoto Univ. 24 (1988), 169-203. | MR | Zbl
[T.Wa] Takanobu S. Watanabe S.: Asymptotic expansion formulas of the Schilder type for a class of conditional Wiener functional integration. In “Asymptotics problems in probability theory: Wiener functionals and asymptotics”. K.D. Elworthy N. Ikeda edit. Pitman. Res. Notes. Math. Series. 284 (1993), 194-241. | Zbl
[V.S.C] Varopoulos N. Saloff-Coste L. Coulhon T.: Analysis and geometry on groups. Cambridge Tracts in Maths. 100 (1992). | MR | Zbl
[Wa] Watanabe S.: Stochastic analysis and its application. Sugaku 5 (1992), 51-71. | MR | Zbl