We investigate the multiplicative properties of the spaces As in the case of the classical Sobolev spaces this space does not form an algebra. We investigate instead the space , more precisely a subspace of it formed by products of solutions of the homogeneous wave equation with data in .
@article{SEDP_1997-1998____A7_0, author = {Klainerman, Sergiu and Machedon, Matei}, title = {On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:7}, pages = {1--9}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1997-1998}, zbl = {1064.46501}, mrnumber = {1660520}, language = {en}, url = {http://www.numdam.org/item/SEDP_1997-1998____A7_0/} }
TY - JOUR AU - Klainerman, Sergiu AU - Machedon, Matei TI - On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:7 PY - 1997-1998 SP - 1 EP - 9 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1997-1998____A7_0/ LA - en ID - SEDP_1997-1998____A7_0 ER -
%0 Journal Article %A Klainerman, Sergiu %A Machedon, Matei %T On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:7 %D 1997-1998 %P 1-9 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1997-1998____A7_0/ %G en %F SEDP_1997-1998____A7_0
Klainerman, Sergiu; Machedon, Matei. On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1997-1998), Exposé no. 7, 9 p. http://www.numdam.org/item/SEDP_1997-1998____A7_0/
[B] J. Bourgain,Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II GAFA 3(1993), 107-156, 209-262. | MR | Zbl
[C] Jean-Yves Chemin , Fluides Parfaits Incompressible. Asterix 230 , 1995 | Numdam | MR | Zbl
[E-V] M. Escobedo and L Vega, A semilinear Dirac equation in for , SIAM J. Math anal. vol 28, no 2, 338-362, March 1997 | MR | Zbl
[K-M1] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math 46(1993), 1221-1268 | MR | Zbl
[K-M2] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math J. 81 (1995), 99-103 | MR | Zbl
[K-S] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of Wave Maps type, Comm.P.D.E 22 (5-6), 901-918(1997). | MR | Zbl