SEMINAIRE

Equations aux Dérivées Partielles

Sergiu Klainerman and Matei Machedon
On the algebraic properties of the $H_{\frac{n}{2}, \frac{1}{2}}$ spaces
Séminaire É. D. P. (1997-1998), Exposé nº VII, 9 p.
<http://sedp.cedram.org/item?id=SEDP_1997-1998 \qquad A7_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX
Fax : 33 (0)1 69334949
Tél : 33 (0)1 69334999

cedram

On the algebraic properties of the $H_{\frac{n}{2}, \frac{1}{2}}$ spaces

Sergiu Klainerman, Matei Machedon ${ }^{\dagger}$
Department of Mathematics
Princeton University, University of Maryland

June 12, 1998

Abstract

We investigate the multiplicative properties of the spaces $H^{\frac{n}{2}, \frac{1}{2}}$ As in the case of the classical Sobolev spaces $H^{\frac{n}{2}}$ this space does not form an algebra. We investigate instead the space $H^{\frac{n}{2}} \cap L^{\infty}$, more precisely a subspace of it formed by products of solutions of the homogeneous wave equation with data in $H^{\frac{n}{2}}$.

It is a well known fact that the classical Sobolev spaces $H_{s}\left(\mathbb{R}^{n}\right), s>\frac{n}{2}$, form an algebra relative to the standard multiplication of functions. This properties fails however for the critical exponent $s=\frac{n}{2}$, unless we consider the smaller space $H_{\frac{n}{2}} \cap$ $L^{\infty}(\mathbb{R})$ for which it is still true. If n is an even integer this fact can be easily proved with the help of the Gagliardo-Nirenberg inequality. If n is odd a simple proof of this fact can be obtained with the help of the following characterization of $H_{s}\left(\mathbb{R}^{n}\right)$ spaces for $0<s<1$: A function $f \in H_{s}$ if and only if $f \in L^{2}$ and, $$
\iint \frac{|f(x+y)-f(x)|^{2}}{|y|^{n+2 s}} d x d y<\infty
$$

Another proof ${ }^{1}$ (see [C]) can be obtained with the help of Littlewood-Paley decompositions.

In recent years the spaces $H_{s, \delta}\left(\mathbb{R}^{n+1}\right)$ have surfaced as reasonable hyperbolic analogues of the classical H_{s} spaces. See [B]. In [K-M2] it was proved that, if $\delta>\frac{n}{2}, \delta>\frac{1}{2}$ and $n \geq 2$, these spaces form an algebra. This fact played a fundamental role in the

^[*Research partially supported by NSF grant DMS- 9400258. Supported also by by the Pascal Foundation of Ecole Normale Superior as well as by a Guggenheim fellowship. Would also like to thank the Laboratoire D'Analyse Numerique of Jussieu and I.H.E.S for their kind hospitality. ${ }^{\dagger}$ Research partially supported by NSF grant DMS- 9501096 ${ }^{1}$ We shall present yet another proof of this fact below]

proof of local well posedness of the Wave Maps equations in H^{s}, for any $s>\frac{n}{2}$. By analogy with the case of classical Sobolev spaces one may expect that, in the case of the critical exponents $s=\frac{n}{2}, \delta=\frac{1}{2}$ the space $H_{\frac{n}{2}, \frac{1}{2}} \cap L^{\infty}\left(\mathbb{R}^{n+1}\right)$ forms also an algebra. Such a fact may play an important role to prove the well posedness of the Wave-Maps equations for the critical exponent $s=\frac{n}{2}$. There are reasons to believe that such a result is however false. In this note we shall establish a weaker version of this fact concerning products $u_{1} u_{2} \ldots u_{N}$ of solutions of the wave equation $\square u_{i}=0$ with $H_{\frac{n}{2}}$ data. It is known, see [K-M1], [K-M2] and [K-S], that for $N=2$ the product $u_{1} u_{2} \in H_{\frac{n}{2}, \frac{1}{2}}$. This result does probably fail for $N=3$, we believe that the following conjecture is true.

Conjecture: If $\square u=0, u=f, \partial_{t} u=0$ at $t=0$, there exists f_{k} with $\left\|f_{k}\right\|_{H_{\frac{n}{2}}}=1$ such that for the corresponding solutions u_{k},

$$
\left\|u_{k}^{3}\right\|_{H_{\frac{n}{2}, \frac{1}{2}}} \rightarrow \infty
$$

Our main results are contained in the following theorems:
Theorem 1 Let $n \geq 3$. Let $u_{i}, i=1 \ldots N$ verifying $\square u_{i}=0$ with data $a^{2} u_{i}=f_{i} \in H_{\frac{n}{2}}$, $\partial_{t} u_{i}=g_{i} \in H_{\frac{n}{2}-1}$ at $t=0$. If in addition $u_{i} \in L^{\infty}$ then $u_{1} u_{2} \ldots u_{N} \in H_{\frac{n}{2}, \frac{1}{2}}$.

Theorem 2 Let $n \geq 3$. Let F be an analytic function of one real variable whose Fourier transform is a compactly supported measure ${ }^{3}$. Let u be an arbitrary solution of $\square u=0$ with $H_{\frac{n}{2}}$ data. Then $F(u) \in H_{\frac{n}{2}, \frac{1}{2}}$.

Remark: We expect these results to be correct also for $\mathrm{n}=2$. In fact there is only one place in the proof, the estimate for $\left\|E_{3}\right\|_{L^{2}}$ that requires $n>2$. This term could probably be handled by a direct but long calculation.

As a warm up for the proof of theorem 1 we shall start by presenting an elementary proof of the algebra property of $H_{\frac{n}{2}} \cap L^{\infty}$. Let $u, v \in H_{\frac{n}{2}} \cap L^{\infty}$; to estimate $D^{\frac{n}{2}}(u v)$ it suffices to estimate the commutator $E=D^{\frac{n}{2}}(u v)-u D^{\frac{n}{2}} v-v D^{\frac{n}{2}} u$. In fact we can show that

$$
\begin{equation*}
\|E\|_{L^{2}} \leq c\left\|D^{\frac{n}{2}} u\right\|_{L^{2}}\left\|D^{\frac{n}{2}} v\right\|_{L^{2}} \tag{1}
\end{equation*}
$$

from which we derive,

$$
\begin{equation*}
\|E\|_{L^{2}} \leq c\left(\left\|D^{\frac{n}{2}} u\right\|_{L^{2}}\left\|D^{\frac{n}{2}} v\right\|_{L^{2}}+\left\|D^{\frac{n}{2}} u\right\|_{L^{2}}|v|_{L^{\infty}}+\left\|D^{\frac{n}{2}} v\right\|_{L^{2}}|u|_{L^{\infty}}\right) \tag{2}
\end{equation*}
$$

To prove 1 we write the Fourier transform E^{\wedge} in the form,

$$
E^{\wedge}(\xi)=\int \sigma(\xi-\eta, \eta) u^{\wedge}(\xi-\eta) v^{\wedge}(\eta) d \eta
$$

[^1]where $\sigma(\xi-\eta, \eta)=|\xi|^{\frac{n}{2}}-|\xi-\eta|^{\frac{n}{2}}-|\eta|^{\frac{n}{2}}$. Now observe that,
$$
|\sigma(\xi-\eta, \eta)| \leq c \min (|\xi-\eta|,|\eta|) \max ^{\frac{n}{2}-1}(|\xi-\eta|,|\eta|)
$$

Thus, writing $|\xi|^{\frac{n}{2}}\left|u^{\wedge}(\xi)\right|=f(\xi),|\xi|^{\frac{n}{2}}\left|v^{\wedge}(\xi)\right|=g(\xi)$ with $f, g \in L^{2}$,

$$
\left|E^{\wedge}(\xi)\right| \leq c \int\left(\frac{1}{|\xi-\eta|^{\frac{n}{2}-1}|\eta|}+\frac{1}{|\eta|^{\frac{n}{2}-1}|\xi-\eta|}\right) f(\xi-\eta) g(\eta) d \eta
$$

from which 1 is immediate.
We shall next prove Theorem 1 in the particular case of $N=3$. Define the operator $\mathcal{D}=W_{+}^{\frac{n}{2}} W_{-}^{\frac{1}{2}}$ by $W_{ \pm}^{a} F(t, x)=\left.\iint e^{i \tau t} e^{i x \cdot \xi}| | \tau| \pm \xi|\right|^{a} u^{\sim}(\tau, \xi) d \tau d \xi$ where \sim deotes the space-time Fourier transform of F. We have to prove that $\mathcal{D}\left(u_{1} u_{2} u_{3}\right) \in L^{2}$ for all solutions $\square u_{i}=0, i=1,2,3$ with $H_{\frac{n}{2}}$ data and $u_{i} \in L^{\infty}$.

The main idea of our proof is to consider the following commutator,

$$
\begin{equation*}
E=\mathcal{D}\left(u_{1} u_{2} u_{3}\right)-u_{1} \mathcal{D}\left(u_{2} u_{3}\right)-u_{2} \mathcal{D}\left(u_{3} u_{1}\right)-u_{3} \mathcal{D}\left(u_{1} u_{2}\right), \tag{3}
\end{equation*}
$$

for which we prove the estimate,

$$
\|E\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C
$$

with a constant C which depends only on the size of the $H_{\frac{n}{2}}$ norm of the data for $u_{1}, u_{2} u_{3}$. Clearly, it suffices to prove this estimate for

$$
\begin{equation*}
u_{i}^{\sim}(\tau, \xi)=\delta\left(\tau-\epsilon_{i}|\xi|\right) \frac{f_{i}(\xi)}{|\xi|^{\frac{n}{2}}} \tag{4}
\end{equation*}
$$

where $\epsilon_{i}= \pm 1$ and $f_{i} \in L^{2}$. More precisely we shall prove the estimate,

$$
\begin{equation*}
\|E\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C\left\|f_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\left\|f_{2}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\left\|f_{3}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{5}
\end{equation*}
$$

The proof of he Theorem is then an immediate consequence of (5) and the result for $N=2$. To prove (5) we write the space-time Fourier transform of E in the form ,

$$
\begin{equation*}
E^{\sim}(\tau, \xi)=\iiint_{\lambda_{1}+\lambda_{2}+\lambda_{3}=\tau, \xi_{1}+\xi_{2}+\xi_{3}=\xi} m\left(\xi_{1}, \xi_{2}, \xi_{3}\right) u_{1}^{\sim}\left(\lambda_{1}, \xi_{1}\right) u_{2}^{\sim}\left(\lambda_{2}, \xi_{2}\right) u_{3}^{\sim}\left(\lambda_{3}, \xi_{3}\right) d \tau d \xi \tag{6}
\end{equation*}
$$

where, $u_{i}{ }^{\sim}$ are given by (4) and

$$
\begin{align*}
m\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =d\left(\epsilon_{1}\left|\xi_{1}\right|+\epsilon_{2}\left|\xi_{2}\right|+\epsilon_{3}\left|\xi_{3}\right|, \xi_{1}+\xi_{2}+\xi_{3}\right)-d\left(\epsilon_{2}\left|\xi_{2}\right|+\epsilon_{3}\left|\xi_{3}\right|, \xi_{2}+\xi_{3}\right) \\
& -d\left(\epsilon_{1}\left|\xi_{1}\right|+\epsilon_{3}\left|\xi_{3}\right|, \xi_{1}+\xi_{3}\right)-d\left(\epsilon_{1}\left|\xi_{1}\right|+\epsilon_{2}\left|\xi_{2}\right|, \xi_{1}+\xi_{2}\right) \tag{7}
\end{align*}
$$

and,

$$
d(\tau, \xi)=(|\tau|+|\xi|)^{\frac{n}{2}} \| \tau\left|-|\xi|^{\frac{1}{2}}\right.
$$

is the symbol of the operator \mathcal{D}. The commutator E was define with the intent that $m\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \equiv 0$ if any of the vectors $\xi_{1}, \xi_{2}, \xi_{3}$ vanish 4. In fact we can prove the following:

$$
\begin{equation*}
\left|m\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq C \min ^{\frac{1}{2}}\left(\left|\xi_{1}\right|,\left|\xi_{2}\right|,\left|\xi_{3}\right|\right) \max \frac{\frac{n}{2}}{\left(\left|\xi_{1}\right|,\left|\xi_{2}\right|,\left|\xi_{3}\right|\right)} \tag{8}
\end{equation*}
$$

[^2]Without loss of generality we may assume that in (6) we integrate only on the region $\left|\xi_{1}\right| \leq\left|\xi_{2}\right| \leq\left|\xi_{3}\right|$. Then, $\left|m\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right| \leq C\left(\left|\xi_{1}\right| \cdot\left|\xi_{2}\right|\right)^{\frac{1}{4}}\left|\xi_{3}\right|^{\frac{n}{2}}$ and,

$$
\left|E^{\sim}(\tau, \xi)\right| \leq C \iiint_{\lambda_{1}+\lambda_{2}+\lambda_{3}=\tau, \xi_{1}+\xi_{2}+\xi_{3}=\xi}\left(\left|\xi_{1}\right| \cdot\left|\xi_{2}\right|\right)^{\frac{1}{4}}\left|\xi_{3}\right|^{\frac{n}{2}}\left|u_{1}^{\sim}\left(\lambda_{1}, \xi_{1}\right) u_{2}^{\sim}\left(\lambda_{2}, \xi_{2}\right) u_{3}^{\sim}\left(\lambda_{3}, \xi_{3}\right)\right| .
$$

Henceforth,

$$
\begin{aligned}
\left|E^{\sim}(\tau, \xi)\right| & \leq v_{1}^{\sim} * v_{2}^{\sim} * v_{3}^{\sim}(\tau, \xi), \quad \text { where } \\
v_{i}^{\sim}(\tau, \xi) & =\delta\left(\tau-\epsilon_{i}\left|\xi_{i}\right|\right) g_{i}(\xi)
\end{aligned}
$$

with $g_{1} \wedge(\xi)=\frac{1}{|\xi|^{\frac{2 n-1}{4}}}\left|f_{1}(\xi)\right|, g_{2}{ }^{\wedge}(\xi)=\frac{1}{|\xi|^{\frac{2 n-1}{4}}}\left|f_{2}(\xi)\right|$, and $g_{3}{ }^{\wedge}(\xi)=\left|f_{3}(\xi)\right|$. Thus v_{1}, v_{2} and v_{3} are solutions of $\square v_{i}=0$ with data in $H^{\frac{2 n-1}{4}}$ and respectively L^{2}. By Plancherel formula and Holder inequality,

$$
\|E\|_{L^{2}} \leq C\left\|v_{1} v_{2} v_{3}\right\|_{L^{2}} \leq C\left\|v_{3}\right\|_{L_{t}^{\infty} L_{x}^{2}}\left\|v_{1}\right\|_{L_{t}^{4} L_{x}^{x}}\left\|v_{2}\right\|_{L_{t}^{4} L_{x}^{\infty}}
$$

and the proof follows from the following version of the Strichartz-Pecher inequalities. See [E-V]. It is this step than does not work for $\mathrm{n}=2$.

Proposition 0.1 Let $v^{\sim}(\tau, \xi)=\delta(\tau-|\xi|) g^{\wedge}(\xi)$. If $n \geq 3$ and $2<q<\infty$, we have, with a constant $C=C_{q, n}$ depending only on q and the dimension n,

$$
\|v\|_{L_{t}^{q} L_{x}^{\infty}} \leq C_{q, n}\|g\|_{\dot{H}_{\frac{n}{2}-\frac{1}{q}}}
$$

Moreover, for large q,

$$
C_{q, n} \leq C_{n} \sqrt{q}
$$

where C_{n} is a constant depending only on n and not on q. For $n=2$ we have to take $4<q<\infty$.

We next proceed to prove the theorem in full generality. Given $u_{1} \ldots u_{N}$, as defined in (4), we form the commutator,

$$
\begin{equation*}
E=\mathcal{D}\left(u_{1} \ldots u_{N}\right)+\sum_{k=1}^{N-2}(-1)^{k} \sum_{\sigma \in A_{k}} u_{\sigma(1)} \ldots u_{\sigma(k)} \mathcal{D}\left(u_{\sigma(k+1)} \ldots u_{\sigma(N)}\right) \tag{9}
\end{equation*}
$$

where A_{k} denotes all permutations of $\{1, \ldots, N\}$ with $\sigma(1)<\sigma(2) \ldots<\sigma(k)$ and $\sigma(k+1)<\sigma(k+2) \ldots<\sigma(N)$. Thus A_{k} has $C_{N}^{k}=\frac{N!}{k!(N-k)!}$ distinct elements. We shall prove that,

$$
\|E\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C_{N}\left\|f_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \cdots\left\|f_{N}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

More precisely we will prove the following,
Theorem 3 Consider $u_{i}{ }^{\sim}=\delta\left(\tau-\epsilon_{i}|\xi|\right) \frac{f_{i}(\xi)}{|\xi|^{\frac{1}{2}}}$ with $f_{i} \in L^{2}$ and the commutator E defined by (9) Then,

$$
\|E\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq(C \sqrt{N})^{N}\left\|f_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \cdot\left\|f_{2}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \cdots\left\|f_{N}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Proof of Theorem 3: The Fourier transform of E can be written in the form,

$$
\begin{equation*}
E^{\sim}(\tau, \xi)=\int \cdots \int_{\sum_{i} \lambda_{i}=\tau, \sum_{i} \xi_{i}=\xi} m\left(\xi_{1}, \ldots \xi_{N}\right) u_{1}^{\sim}\left(\lambda_{1}, \xi_{1}\right) \cdots u_{N}^{\sim}\left(\lambda_{N}, \xi_{N}\right) d \lambda d \xi \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
m\left(\xi_{1}, \ldots \xi_{N}\right)=\sum_{k=0}^{N-2}(-1)^{k} \sum_{\sigma \in A_{k}} d\left(\sum_{i=k+1}^{N} \epsilon_{\sigma(i)}\left|\xi_{\sigma(i)}\right|, \sum_{i=k+1}^{N} \xi_{\sigma(i)}\right) \tag{11}
\end{equation*}
$$

Observe that $m \equiv 0$ whenever any one of the vectors $\xi_{1}, \ldots \xi_{N}$ vanishes. In fact we shall prove the following inequality,

$$
\begin{equation*}
m\left(\xi_{1}, \ldots \xi_{N}\right) \leq C 2^{N} \min ^{\frac{1}{2}}\left(\left|\xi_{1}\right|, \ldots\left|\xi_{N}\right|\right) \max ^{\frac{n}{2}}\left(\left|\xi_{1}\right|, \ldots\left|\xi_{N}\right|\right) \tag{12}
\end{equation*}
$$

Assuming the above inequality the theorem can be proved as follows: From (10), if we assume, without loss of generality, that $\left|\xi_{1}\right| \leq\left|\xi_{2}\right| \leq \ldots \leq\left|\xi_{N}\right|$ then,

$$
|m| \leq C\left|\xi_{1}\right|^{\frac{1}{2}}|\xi|^{\frac{n}{2}} \leq C\left(\left|\xi_{1}\right| \cdots\left|\xi_{N-1}\right|\right)^{\frac{1}{2(N-1)}}\left|\xi_{N}\right|^{\frac{n}{2}}
$$

Therefore,

$$
\left|E^{\sim}\right| \leq C 2^{N}\left(v_{1} \cdot v_{2} \cdots v_{N}\right)^{\sim}
$$

where $v_{1} \ldots v_{N}$ verify $\square v_{i}=0$ with data $g_{i}{ }^{\wedge}(\xi)=\frac{1}{|\xi|^{\frac{n}{2}-\frac{1}{2(N-1)}}}\left|f_{i}{ }^{\wedge}(\xi)\right|$ for $i=1, \ldots, N-1$ and $g_{N}{ }^{\wedge}(\xi)=\left|f_{N} \wedge(\xi)\right|$. Now, in view of Proposition 0.1, for all $i=1,2 \ldots, N-1$

$$
\left\|v_{i}\right\|_{L_{t}^{2(N-1)} L_{x}^{\infty}} \leq C N^{\frac{1}{2}}\left\|D^{\frac{n}{2}-\frac{1}{2(N-1)}} g_{i}\right\|_{L^{2}}=C N^{\frac{1}{2}}\left\|f_{i}\right\|_{L^{2}} .
$$

Therefore,

$$
\begin{gathered}
\|E\|_{L^{2}} \leq C 2^{N}\left\|v_{1}\right\|_{L_{t}^{2(N-1)} L_{x}^{\infty}} \cdots \mid v_{N-1}\left\|_{L_{t}^{2(N-1)} L_{x}^{\infty}}\right\| v_{N} \|_{L_{t}^{\infty} L_{x}^{2}} \\
\leq C^{N} N^{\frac{N}{2}}\left\|f_{1}\right\|_{L^{2}} \cdots\left\|f_{N}\right\|_{L^{2}}
\end{gathered}
$$

and thus prove the desired inequality.
To finish the proof of Theorem 3 it remains to prove (12) and Prop. 0.1. To prove (12) first rewrite (11) in the form

$$
m\left(\xi_{1}, \ldots \xi_{N}\right)=\sum_{k=0}^{N-2}(-1)^{k} \sum_{\sigma \in A_{k}} d_{N-k}\left(\xi_{\sigma(k+1)}, \xi_{\sigma(k+2)}, \ldots, \xi_{\sigma(N)}\right)
$$

where

$$
d_{l}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{l}\right)=\left|\sum_{i=1}^{k} \xi_{i}\right|^{\frac{n}{2}}| | \sum_{i=1}^{k} \epsilon_{i}\left|\xi_{i}\right|\left|-\left|\sum_{i=1}^{k} \xi_{i}\right|\right|^{\frac{1}{2}}
$$

Assume, without loss of generality, that $\left|\xi_{1}\right| \leq \ldots\left|\xi_{N}\right|$. Clearly $m\left(\xi_{1}, \ldots \xi_{N}\right)$ can be written in the form as a sum of C_{N-1}^{k} terms of the type $d_{k+1}\left(\xi_{1}, \xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)-$
$d_{k}\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)$ where $1<i_{1}<i_{2} \ldots i_{k}$, for $2 \leq k \leq N-1$, as well terms of the type $d_{2}\left(\xi_{1}, \xi_{i}\right)$. Thus the inequality (11) follows from the following,

$$
\begin{align*}
d_{2}\left(\xi_{1}, \xi_{i}\right) & \leq\left. c\left|\xi_{1} 1^{\frac{1}{2}}\right| \xi_{N}\right|^{\frac{n}{2}} \tag{13}\\
\left|d_{k+1}\left(\xi_{1}, \xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)-d_{k}\left(\xi_{i_{1}}, \ldots, \xi_{i_{k}}\right)\right| & \leq\left. c\left|\xi_{1} 1^{\frac{1}{2}}\right| \xi_{N}\right|^{\frac{n}{2}} \tag{14}
\end{align*}
$$

The inequality (13) follows easily from,

$$
|||\xi| \pm|\eta||-|\xi+\eta|| \leq 2 \min (|\xi|,|\eta|) .
$$

To prove (14) we can write the left hand side L in the form

$$
\begin{aligned}
L & =\left|\xi_{1}+A\right|^{\frac{n}{2}}| | \epsilon_{1}\left|\xi_{1}\right|+B\left|-\left|\xi_{1}+A\right|\right|^{\frac{1}{2}}-|A|^{\frac{n}{2}}| | B|-|A||^{\frac{1}{2}} \\
& =\left(\left|\xi_{1}+A\right|^{\frac{n}{2}}-|A|^{\frac{n}{2}}\right)| | \epsilon_{1}\left|\xi_{1}\right|+B\left|-\left|\xi_{1}+A\right|\right|^{\frac{1}{2}} \\
& +|A|^{\frac{n}{2}}\left(| | \epsilon_{1}\left|\xi_{1}\right|+B\left|-\left|\xi_{1}+A\right|\right|^{\frac{1}{2}}-||B|-|A||^{\frac{1}{2}}\right)
\end{aligned}
$$

where $A=\xi_{i_{1}}+\ldots+\xi_{i_{k}}, B=\epsilon_{i_{1}}\left|\xi_{i_{1}}\right|+\ldots+\epsilon_{i_{k}}\left|\xi_{i_{k}}\right|$. Now, the result follows easily from $\left|\left|\xi_{1}+A\right|^{\frac{n}{2}}-|A|^{\frac{n}{2}}\right| \leq c\left|\xi_{1}\right|\left|\xi_{N}\right|^{\frac{n}{2}-\frac{1}{2}}$ and, since $\left||u|^{\frac{1}{2}}-|v|^{\frac{1}{2}}\right| \leq|u-v|^{\frac{1}{2}}$,

Proof of Prop. 0.1: Let T be the operator defined from $L^{2}\left(\mathbb{R}^{n}\right)$ to functions of $(t, x) \in \mathbb{R}^{n+1}$ defined by

$$
T f(t, x)=\int e^{i t|\xi|+i x \cdot \xi} \frac{1}{|\xi|^{\frac{n}{2}-\frac{1}{q}}} f^{\wedge}(\xi) d \xi
$$

By the usual $T T^{*}$ argument to show that $\|T f\|_{L_{t}^{q} L_{x}^{\infty}} \leq c \sqrt{q}\|f\|_{L^{2}}$ it suffices to check that $\left\|T T^{*} F\right\|_{L_{t}^{q} L_{x}^{\infty}} \leq C q\|F\|_{L_{t}^{q^{\prime}} L_{x}^{1}}$. Now observe that $T T^{*}$ can be written in the form,

$$
\begin{equation*}
T T^{*} F(t, x)=\iint k(t-s, x-y) F(s, y) d s d y \tag{15}
\end{equation*}
$$

where,

$$
k(t, x)=\int e^{i t|\xi|+i x \cdot \xi} \frac{1}{|\xi|^{n-\frac{2}{q}}} d \xi .
$$

We shall show that, for large q,

$$
\begin{equation*}
|k(t, x)| \leq C q \frac{1}{|t|^{\frac{2}{q}}} \tag{16}
\end{equation*}
$$

Thus, from (15),

$$
\left\|T T^{*} F(t, \cdot)\right\|_{L_{x}^{\infty}} \leq C q \int \frac{1}{|t-s|^{\frac{2}{q}}}\|F(s, \cdot)\|_{L_{x}^{1}} .
$$

By applying the Hardy-Littlewood inequality ${ }^{5}$ we infer that,

$$
\left\|T T^{*} F\right\|_{L_{t}^{q} L_{x}^{\infty}} \leq C q\|F\|_{L_{t}^{q^{\prime}} L_{x}^{\infty}}
$$

as desired. It remains to prove (16). We shall prove it for $n=3$, the proof for
 $k=k_{1}+k_{2}$ with

$$
\begin{aligned}
& k_{1}=\int_{0}^{\frac{1}{|t|}} e^{i t \lambda \frac{\sin \lambda|x|}{\lambda|x|} \frac{1}{\lambda^{1-\frac{2}{q}}} d \lambda} \\
& k_{2}=\int_{\frac{1}{|t|}}^{\infty} e^{i t \lambda \frac{\operatorname{sin\lambda } \lambda|x|}{\lambda|x|} \frac{1}{\lambda^{1-\frac{2}{q}}} d \lambda}
\end{aligned}
$$

Clearly

$$
\left|k_{1}\right| \leq \int_{0}^{\frac{1}{|t|}} \lambda^{-1+\frac{2}{q}} d \lambda=\frac{q}{2}|t|^{-\frac{2}{q}}
$$

On the other hand, if $\frac{|t|}{2} \leq|x|$,

$$
\begin{gathered}
\left|k_{2}\right| \leq \frac{1}{|x|} \int_{\frac{1}{|t|}}^{\infty} \frac{1}{\lambda^{-2+\frac{2}{q}}} d \lambda \leq \frac{1}{1-\frac{2}{q}} \frac{1}{|x|}|t|^{1-\frac{2}{q}} \\
\leq C|t|^{-\frac{2}{q}} .
\end{gathered}
$$

Finally, for $|x| \leq \frac{|t|}{2}$, we make a change of variables and then integrate by parts as follows,

$$
\begin{aligned}
k_{2}(x) & =|x|^{-\frac{2}{q}} \int_{\frac{|x|}{|t|}}^{\infty} e^{i \frac{|t|}{|x|} \lambda} \frac{\sin \lambda}{\lambda} \lambda^{-1+\frac{2}{q}} d \lambda \\
& =|x|^{-\frac{2}{q}} \int_{\frac{|x|}{|t|}}^{\infty} \frac{|x|}{|t|} \frac{d}{d \lambda}\left(e^{i \frac{|t|}{|x|} \lambda}\right) \frac{\sin \lambda}{\lambda} \lambda^{-1+\frac{2}{q}} d \lambda \\
& =k_{21}+k_{22}+k_{23} .
\end{aligned}
$$

The absolute value of the boundary term K_{21} is clearly bounded by $|x|^{-\frac{2}{q}} \frac{|x|}{|t|}\left(\frac{|x|}{|t|}\right)^{-1+\frac{2}{q}}=$ $|t|^{-\frac{2}{q}}$. Also,

[^3]\[

$$
\begin{aligned}
\left|k_{22}\right| & =|x|^{-\frac{2}{q}} \frac{|x|}{|t|}\left|\int_{\frac{|x|}{|t|}}^{\infty} e^{i \frac{|t|}{|x|} \lambda} \frac{\sin \lambda}{\lambda} \frac{d}{d \lambda} \lambda^{-1+\frac{2}{q}}\right| \\
& \leq|x|^{-\frac{2}{q}} \frac{|x|}{|t|}\left(1-\frac{2}{q}\right) \int_{\frac{|x|}{|t|}}^{\infty} \lambda^{-2+\frac{2}{q}} d \lambda \\
& \leq|t|^{-\frac{2}{q}} \\
\left|k_{23}\right| & =|x|^{-\frac{2}{q}} \frac{|x|}{|t|}\left|\int_{\frac{|x|}{|t|}}^{\infty} e^{i \frac{|t|}{|x|} \lambda} \frac{d}{d \lambda}\left(\frac{\sin \lambda}{\lambda}\right) \lambda^{-1+\frac{2}{q}} d \lambda\right| \\
& \leq C|x|^{-\frac{2}{q}} \frac{|x|}{|t|} \int_{\frac{|x|}{|t|}}^{\infty} \lambda^{-2+\frac{2}{q}} d \lambda \\
& \leq C|t|^{-\frac{2}{q}} .
\end{aligned}
$$
\]

Hence $\left|k_{2}\right| \leq C|t|^{-\frac{2}{q}}$ as desired.
This ends the proof of Theorem 3. Theorem 1 is an obvious consequence of formula (9) and Theorem 3.

Proof of Theorem 2: Without loss of generality we may assume that u is a solution of $\square u=0$ with data $u=f \in H_{\frac{n}{2}}, \partial_{t} u=0$ at $t=0$. In view of Theorem 3 we have the formula,

$$
\begin{equation*}
\mathcal{D}\left(u^{N}\right)=C_{N}^{1} u \mathcal{D}\left(u^{N-1}\right)-C_{N}^{2} u^{2} \mathcal{D}\left(u^{N-2}\right)+\ldots(-1)^{N-2} u^{N-2} \mathcal{D}\left(u^{2}\right)+E_{N} \tag{17}
\end{equation*}
$$

where E_{N} verifies the estimate,

$$
\begin{equation*}
\left\|E_{N}\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C^{N} N^{\frac{N}{2}} \tag{18}
\end{equation*}
$$

Next, we remark ${ }^{6}$

$$
\begin{equation*}
\mathcal{D}\left(e^{i \lambda u}\right) e^{-i \lambda u}=\sum_{k=0}^{\infty} \frac{i \lambda E_{k}}{k!} \tag{19}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left\|\mathcal{D} e^{i \lambda u}\right\|_{L^{2}} \leq C e^{C \lambda^{2}}\|f\|_{H^{n / 2}} \tag{20}
\end{equation*}
$$

Therefore, if we write

$$
\begin{equation*}
F(u)=\int e^{i \lambda u} \tilde{F}(\lambda) d \lambda \tag{21}
\end{equation*}
$$

we conclude

$$
\begin{equation*}
\|\mathcal{D} F(u)\|_{L^{2}} \leq C\|f\|_{H^{n / 2}} \int e^{C \lambda^{2}}|\tilde{F}(\lambda)| d \lambda \tag{22}
\end{equation*}
$$

[^4]
References

[B] J. Bourgain,Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II GAFA 3(1993), 107156, 209-262.
[C] Jean-Yves Chemin, Fluides Parfaits Incompressible. Asterix 230, 1995
[E-V] M. Escobedo and L Vega, A semilinear Dirac equation in $H^{s}\left(R^{3}\right)$ for $s>1$, SIAM J. Math anal. vol 28, no 2, 338-362, March 1997
[K-M1] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math 46(1993), 1221-1268
[K-M2] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math J. 81 (1995), 99-103
[K-S] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of Wave Maps type, Comm.P.D.E 22 (5-6), 901-918(1997).

[^1]: ${ }^{2}$ In what follows we shall simply say that the u_{i} have $H^{\frac{n}{2}}$ data
 ${ }^{3}$ The exact reqirement is that $\int e^{c \lambda^{2}} \mid \tilde{F} \| d \lambda$ be finite.

[^2]: ${ }^{4}$ Observe that that $d(\epsilon|\xi|, \xi)=0$.

[^3]: ${ }^{5}$ Which is valid for all $q>2$, with a uniform constant.

[^4]: ${ }^{6}$ Our formula is not true for general functions u, but is true for bounded ones. Out of convenience, let's assume u has Schwartz data, thus is bounded, and we prove an a priori estimate with constants independent of the L^{∞} norm of u.

