@article{SEDP_1996-1997____A16_0, author = {Shnirelman, Alexander I.}, title = {Weak solutions of incompressible {Euler} equations with decreasing energy}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:16}, pages = {1--9}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {0913.35110}, mrnumber = {1482822}, language = {en}, url = {http://www.numdam.org/item/SEDP_1996-1997____A16_0/} }
TY - JOUR AU - Shnirelman, Alexander I. TI - Weak solutions of incompressible Euler equations with decreasing energy JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:16 PY - 1996-1997 SP - 1 EP - 9 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1996-1997____A16_0/ LA - en ID - SEDP_1996-1997____A16_0 ER -
%0 Journal Article %A Shnirelman, Alexander I. %T Weak solutions of incompressible Euler equations with decreasing energy %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:16 %D 1996-1997 %P 1-9 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1996-1997____A16_0/ %G en %F SEDP_1996-1997____A16_0
Shnirelman, Alexander I. Weak solutions of incompressible Euler equations with decreasing energy. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 16, 9 p. http://www.numdam.org/item/SEDP_1996-1997____A16_0/
[1] Y. Brenier, The Least Action Principle and the related concept of generalized flows for incompressible perfect fluids. J. Amer. Math Soc., 2:2 (1989). | MR | Zbl
[2] Y. Brenier, A dual Least Action Principle for the motion of an ideal incompressible fluid. Arch. Rat. Mech. Anal., v.122 (1993), no. 4, 323-351. | MR | Zbl
[3] P. Constantin, W. E, E. Titi, Onsager’s conjecture on the energy conservation for the solutions of the Euler equations. Comm. Math. Phys., v.165 (1994), 207-209. | MR | Zbl
[4] G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D, v. 78 (1994), no. 3-4, 222-240. | MR | Zbl
[5] L. Onsager, Statistical hydromechanics. Nuovo Cimento (Supplemento), v.6 (1949), 279. | MR
[6] V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal., v.3 (1993), no. 4, 343-401. | MR | Zbl
[7] A. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Math. USSR Sbornik, v. 56 (1987), no. 1, 79-105. | Zbl
[8] A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. And Funct. Anal., v.4 (1994), no. 5, 586-620. | EuDML | MR | Zbl
[9] A.Shnirelman, On the non-uniqueness of weak solution of the Euler equations. Preprint IHES, 1996. See also Journees “Equations aux Derivees Partielles” (Saint-Jean-de-Monts, 1996), Exp. No. XVIII, Ecole Polytechnic, Palaiseau, 1996. | EuDML | Numdam | MR | Zbl