On the non-uniqueness of weak solution of the Euler equations
Journées équations aux dérivées partielles (1996), article no. 18, 10 p.
@incollection{JEDP_1996____A18_0,
     author = {Shnirelman, A.},
     title = {On the non-uniqueness of weak solution of the {Euler} equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {18},
     pages = {1--10},
     publisher = {Ecole polytechnique},
     year = {1996},
     mrnumber = {98c:35134},
     zbl = {0881.35096},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1996____A18_0/}
}
TY  - JOUR
AU  - Shnirelman, A.
TI  - On the non-uniqueness of weak solution of the Euler equations
JO  - Journées équations aux dérivées partielles
PY  - 1996
SP  - 1
EP  - 10
PB  - Ecole polytechnique
UR  - http://www.numdam.org/item/JEDP_1996____A18_0/
LA  - en
ID  - JEDP_1996____A18_0
ER  - 
%0 Journal Article
%A Shnirelman, A.
%T On the non-uniqueness of weak solution of the Euler equations
%J Journées équations aux dérivées partielles
%D 1996
%P 1-10
%I Ecole polytechnique
%U http://www.numdam.org/item/JEDP_1996____A18_0/
%G en
%F JEDP_1996____A18_0
Shnirelman, A. On the non-uniqueness of weak solution of the Euler equations. Journées équations aux dérivées partielles (1996), article  no. 18, 10 p. http://www.numdam.org/item/JEDP_1996____A18_0/

[CET] P. Constantin, W. E., E. Titi, Onsager's conjecture on the energy conservation for solutions of the Euler's equations. Communications of Mathematical Physics 165 (1994) 207-209. | MR | Zbl

[D] J.-M. Delort, Existence des nappes de tourbillon en dimension deux. Journal of the American Mathematical Society 4(3) (1991) 553-586. | MR | Zbl

[E] G.L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D. 78(3-4) (1994) 222-240. | MR | Zbl

[K] R.H. Kraichnan, Inertial ranges in two-dimensional turbulence. Physics of Fluids 10(7) (1967) 1417-1423.

[O] L. Onsager, Statistical hydrodynamics. Nuovo Cimento (Supplemento) 6 (1949) 279. | MR

[S] V. Scheffer, An inviscid flow with compact support in space-time. Journal of Geometric Analysis 3(4) (1993) 343-401. | MR | Zbl