α-isoptics of a triangle and their connection to α-isoptic of an oval
Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 159-172.
@article{RSMUP_2015__133__159_0,
     author = {Michalska, Ma{\l}gorzata and Mozgawa, Witold},
     title = {$\alpha $-isoptics of a triangle and their connection to \ensuremath{\alpha}-isoptic of an oval},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {159--172},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {133},
     year = {2015},
     mrnumber = {3354949},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2015__133__159_0/}
}
TY  - JOUR
AU  - Michalska, Małgorzata
AU  - Mozgawa, Witold
TI  - $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2015
SP  - 159
EP  - 172
VL  - 133
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2015__133__159_0/
LA  - en
ID  - RSMUP_2015__133__159_0
ER  - 
%0 Journal Article
%A Michalska, Małgorzata
%A Mozgawa, Witold
%T $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2015
%P 159-172
%V 133
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2015__133__159_0/
%G en
%F RSMUP_2015__133__159_0
Michalska, Małgorzata; Mozgawa, Witold. $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 159-172. http://www.numdam.org/item/RSMUP_2015__133__159_0/

[1] K. BenkoW. CieślakS. GóźdźW. Mozgawa, On isoptic curves, An. Științ. Univ. Al. I. Cuza Iași Secț. I a Mat., 36 (1990), no. 1, 47–54. | MR | Zbl

[2] T. BonnesenW. Fenchel, Theorie der konvexen Körper, Chelsea Publ. Comp., New York, 1948. | Zbl

[3] J. W. BruceP. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge University Press, Cambridge, 1984. | MR | Zbl

[4] W. CieślakA. MiernowskiW. Mozgawa, Isoptics of a closed strictly convex curve, Lect. Notes in Math., 1481 (1991), 28–25. | MR | Zbl

[5] W. CieślakA. MiernowskiW. Mozgawa, Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37–49. | Numdam | MR | Zbl

[6] G. CsimaJ. Szirmai, Isoptic curves of conic sections in constant curvature geometries, to appear. | MR

[7] Ákurusa, Is a convex plane body determined by an isoptic ?, Beitr. Algebra Geom., 53 (2012), 281–294. | MR | Zbl

[8] H. Martini, A contribution to the light field theory, Beitr. Algebra Geom., 30 (1990), 193–201. | MR | Zbl

[9] M. Michalska, A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova, 110 (2003), 161–169. | Numdam | MR | Zbl

[10] M. Radić, About a Determinant of Rectangular 2×n Matrix and its Geometric Interpretation, Beitr. Algebra Geom., 46 (2005), No. 1, 321–349. | MR | Zbl

[11] E. W. Weisstein “Envelope.” From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Envelope.html.