Michalska, Małgorzata; Mozgawa, Witold
α-isoptics of a triangle and their connection to α-isoptic of an oval
Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015) , p. 159-172
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter le site de la revue
MR 3354949
URL stable : http://www.numdam.org/item?id=RSMUP_2015__133__159_0

Bibliographie

[1] K. BenkoW. CieślakS. GóźdźW. Mozgawa, On isoptic curves, An. Științ. Univ. Al. I. Cuza Iași Secț. I a Mat., 36 (1990), no. 1, 47–54. MR 1109793 | Zbl 0725.52002

[2] T. BonnesenW. Fenchel, Theorie der konvexen Körper, Chelsea Publ. Comp., New York, 1948. Zbl 0906.52001

[3] J. W. BruceP. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge University Press, Cambridge, 1984. MR 774048 | Zbl 0534.58008

[4] W. CieślakA. MiernowskiW. Mozgawa, Isoptics of a closed strictly convex curve, Lect. Notes in Math., 1481 (1991), 28–25. MR 1178515 | Zbl 0739.53001

[5] W. CieślakA. MiernowskiW. Mozgawa, Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37–49. Numdam | MR 1438287 | Zbl 0881.53003

[6] G. CsimaJ. Szirmai, Isoptic curves of conic sections in constant curvature geometries, to appear. MR 3274526

[7] Ákurusa, Is a convex plane body determined by an isoptic ?, Beitr. Algebra Geom., 53 (2012), 281–294. MR 2890383 | Zbl 1235.52005

[8] H. Martini, A contribution to the light field theory, Beitr. Algebra Geom., 30 (1990), 193–201. MR 1061015 | Zbl 0679.52004

[9] M. Michalska, A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova, 110 (2003), 161–169. Numdam | MR 2033006 | Zbl 1121.52011

[10] M. Radić, About a Determinant of Rectangular 2×n Matrix and its Geometric Interpretation, Beitr. Algebra Geom., 46 (2005), No. 1, 321–349. MR 2196920 | Zbl 1090.15009

[11] E. W. Weisstein “Envelope.” From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Envelope.html.