@article{RSMUP_2015__133__159_0, author = {Michalska, Ma{\l}gorzata and Mozgawa, Witold}, title = {$\alpha $-isoptics of a triangle and their connection to \ensuremath{\alpha}-isoptic of an oval}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {159--172}, publisher = {Seminario Matematico of the University of Padua}, volume = {133}, year = {2015}, mrnumber = {3354949}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2015__133__159_0/} }
TY - JOUR AU - Michalska, Małgorzata AU - Mozgawa, Witold TI - $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 159 EP - 172 VL - 133 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2015__133__159_0/ LA - en ID - RSMUP_2015__133__159_0 ER -
%0 Journal Article %A Michalska, Małgorzata %A Mozgawa, Witold %T $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 159-172 %V 133 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2015__133__159_0/ %G en %F RSMUP_2015__133__159_0
Michalska, Małgorzata; Mozgawa, Witold. $\alpha $-isoptics of a triangle and their connection to α-isoptic of an oval. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 159-172. http://www.numdam.org/item/RSMUP_2015__133__159_0/
[1] On isoptic curves, An. Științ. Univ. Al. I. Cuza Iași Secț. I a Mat., 36 (1990), no. 1, 47–54. | MR | Zbl
– – – ,[2] Theorie der konvexen Körper, Chelsea Publ. Comp., New York, 1948. | Zbl
– ,[3] Curves and singularities. A geometrical introduction to singularity theory, Cambridge University Press, Cambridge, 1984. | MR | Zbl
– ,[4] Isoptics of a closed strictly convex curve, Lect. Notes in Math., 1481 (1991), 28–25. | MR | Zbl
– – ,[5] Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37–49. | Numdam | MR | Zbl
– – ,[6] Isoptic curves of conic sections in constant curvature geometries, to appear. | MR
– ,[7] Is a convex plane body determined by an isoptic ?, Beitr. Algebra Geom., 53 (2012), 281–294. | MR | Zbl
,[8] A contribution to the light field theory, Beitr. Algebra Geom., 30 (1990), 193–201. | MR | Zbl
,[9] A sufficient condition for the convexity of the area of an isoptic curve of an oval, Rend. Sem. Mat. Univ. Padova, 110 (2003), 161–169. | Numdam | MR | Zbl
,[10] About a Determinant of Rectangular Matrix and its Geometric Interpretation, Beitr. Algebra Geom., 46 (2005), No. 1, 321–349. | MR | Zbl
,[11] “Envelope.” From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Envelope.html.