@article{RSMUP_2003__110__161_0, author = {Michalska, M.}, title = {A sufficient condition for the convexity of the area of an isoptic curve of an oval}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {161--169}, publisher = {Seminario Matematico of the University of Padua}, volume = {110}, year = {2003}, mrnumber = {2033006}, zbl = {1121.52011}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2003__110__161_0/} }
TY - JOUR AU - Michalska, M. TI - A sufficient condition for the convexity of the area of an isoptic curve of an oval JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2003 SP - 161 EP - 169 VL - 110 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2003__110__161_0/ LA - en ID - RSMUP_2003__110__161_0 ER -
%0 Journal Article %A Michalska, M. %T A sufficient condition for the convexity of the area of an isoptic curve of an oval %J Rendiconti del Seminario Matematico della Università di Padova %D 2003 %P 161-169 %V 110 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2003__110__161_0/ %G en %F RSMUP_2003__110__161_0
Michalska, M. A sufficient condition for the convexity of the area of an isoptic curve of an oval. Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003), pp. 161-169. http://www.numdam.org/item/RSMUP_2003__110__161_0/
[1] Isoptics of a Closed Strictly Convex Curve, Lect. Notes in Math., 1481 (1991), pp. 28-35. | MR | Zbl
- - ,[2] Isoptics of a Closed Strictly Convex Curve II, Rend. Sem. Mat. Univ. Padova, 96 (1996), pp. 37-49. | Numdam | MR | Zbl
- - ,[3] Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
,[4] Sur quelques applications géométriques des séries de Fourier, Ann. Sci. Ecole Norm. Sup., 19 (1902), pp. 357-408. | JFM | Numdam | MR
,[5] Trigonometric series, Cambridge Univ. Press, vol. I, II, 1968. | MR | Zbl
,