On the (non-)contractibility of the order complex of the coset poset of an alternating group
Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 35-46.
@article{RSMUP_2013__129__35_0,
     author = {Patassini, Massimiliano},
     title = {On the (non-)contractibility of the order complex of the coset poset of an alternating group},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {35--46},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {129},
     year = {2013},
     mrnumber = {3090629},
     zbl = {1281.20027},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2013__129__35_0/}
}
TY  - JOUR
AU  - Patassini, Massimiliano
TI  - On the (non-)contractibility of the order complex of the coset poset of an alternating group
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2013
SP  - 35
EP  - 46
VL  - 129
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2013__129__35_0/
LA  - en
ID  - RSMUP_2013__129__35_0
ER  - 
%0 Journal Article
%A Patassini, Massimiliano
%T On the (non-)contractibility of the order complex of the coset poset of an alternating group
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2013
%P 35-46
%V 129
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2013__129__35_0/
%G en
%F RSMUP_2013__129__35_0
Patassini, Massimiliano. On the (non-)contractibility of the order complex of the coset poset of an alternating group. Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 35-46. http://www.numdam.org/item/RSMUP_2013__129__35_0/

[1] N. Boston, A probabilistic generalization of the Riemann zeta function, Analytic Number Theory, 1 (1996), pp. 155-162. | MR

[2] K. S. Brown, The coset poset and the probabilistic zeta function of a finite group, J. Algebra, 225 (2000), pp. 989-1012. | MR

[3] E. Detomi - A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra, 265 (2003), pp. 651-668. | MR

[4] W. Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr., 14 (1955), pp. 249-252. | MR

[5] T. Hawkes - M. Isaacs - M. Õzaydin, On the Möbius function of a finite group, Rocky Mountain Journal, 19 (1989), pp. 1003-1034. | MR

[6] A. Mann, Positively finitely generated groups, Forum Math., 8 (1996), pp. 429-459. | MR

[7] M. Patassini, The Probabilistic Zeta function of PSL 2 (q) , of the Suzuki groups 2 B 2 (q) and of the Ree groups 2 G 2 (q) , Pacific J. Math., 240 (2009), pp. 185-200. | MR

[8] M. Patassini, On the Dirichlet polynomial of the simple group of Lie type, Università di Padova, 2011, http://paduaresearch.cab.unipd.it/3272/1/Phd_Thesis.pdf,

[9] M. Patassini, On the (non-)contractibility of the order complex of the coset poset of a classical group, J. Algebra, 343 (2011), pp. 37-77. | MR

[10] M. Patassini, Recognizing the non-Frattini abelian chief factors of a finite group from its Probabilistic Zeta function, Accepted by Comm. Algeb., 2011. | MR

[11] P. Jiménez Seral, Coefficient of the Probabilistic Zeta function of a monolithic group, Glasgow J. Math., 50 (2008), pp. 75-81. | MR