@article{RSMUP_2007__117__113_0, author = {Ascanelli, Alessia}, title = {Well posedness under {Levi} conditions for a degenerate second order {Cauchy} problem}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {113--126}, publisher = {Seminario Matematico of the University of Padua}, volume = {117}, year = {2007}, mrnumber = {2351788}, zbl = {1146.35054}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2007__117__113_0/} }
TY - JOUR AU - Ascanelli, Alessia TI - Well posedness under Levi conditions for a degenerate second order Cauchy problem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2007 SP - 113 EP - 126 VL - 117 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2007__117__113_0/ LA - en ID - RSMUP_2007__117__113_0 ER -
%0 Journal Article %A Ascanelli, Alessia %T Well posedness under Levi conditions for a degenerate second order Cauchy problem %J Rendiconti del Seminario Matematico della Università di Padova %D 2007 %P 113-126 %V 117 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2007__117__113_0/ %G en %F RSMUP_2007__117__113_0
Ascanelli, Alessia. Well posedness under Levi conditions for a degenerate second order Cauchy problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007), pp. 113-126. http://www.numdam.org/item/RSMUP_2007__117__113_0/
[1] Energy estimate and Fundamental Solution for Degenerate Hyperbolic Cauchy problems. J. Differential Equations, 217 (2005), pp. 305-340. | MR | Zbl
- ,[2] Well posedness of the Cauchy problem for some degenerate hyperbolic operators. Pseudo-Differential Operators and Related Topics, Series: Operator Theory: Advances and Applications, Vol. 164, Editors: P. Boggiatto, L. Rodino, J. Toft, M.-W. Wong, Birkhuser Verlag Basel/Switzerland (2006), pp. 23-41. | MR | Zbl
- ,[3] The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trudy Moskov. Mat. Obshch. 41 (1980), pp. 83-99. | MR | Zbl
,[4] The Cauchy problem for strictly hyperbolic operators with non-absolutely continuous coefficients. Tsukuba J. Math. 27 (2003), pp. 1-12. | MR | Zbl
,[5] Coefficients with unbounded derivatives in hyperbolic equations. Math. Nachr. 277 (2004), pp. 1-16. | MR | Zbl
,[6] Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Sc. Norm. Sup. Pisa 6 (1979), pp. 511-559. | Numdam | MR | Zbl
- - ,[7] Well posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1 (2002), pp. 327-358. | Numdam | MR | Zbl
- - ,[8] On the optimal regularity coefficients in hyperbolic Cauchy problem, Bull. Sci. Math. 127 (2003), pp. 328-347. | MR | Zbl
- - ,[9] On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat. 38 (2000), pp. 223-230. | MR | Zbl
- - ,[10] Well posedness in Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), pp. 291-312. | Numdam | MR | Zbl
- - ,[11] On finitely degenerate hyperbolic operators of second order. Osaka J. Math. 41, 4 (2004) pp. 933-947. | MR | Zbl
- ,[12] Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. (Russian) Sibirsk. Mat. ZÏ. 17 (1976), pp. 1256-1270. | MR | Zbl
,[13] Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes. J. Math. Kyoto Univ. 23-3 (1983), pp. 599-616. | MR | Zbl
,[14] Construction of parametrix for hyperbolic equations with fast oscillations in non-Lipschitz coefficients. Comm. Partial Differential Equations 28 (2003), pp. 1471-1502. | MR | Zbl
- ,[15] On the Cauchy problem. Notes and Reports in Mathematics in Science and Engineering, 3. Academic Press, Inc., Orlando, FL; Science Press, Beijing, 1985. | MR | Zbl
,[16] The Cauchy problem for weakly hyperbolic equations of second order. Comm. Partial Differential Equations, 5 (1980), pp. 1273-1296. | MR | Zbl
,