@article{RSMUP_1995__93__7_0, author = {Longobardi, Patrizia and Maj, Mercede and Stonehewer, Stewart}, title = {The classification of groups in which every product of four elements can be reordered}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {7--26}, publisher = {Seminario Matematico of the University of Padua}, volume = {93}, year = {1995}, mrnumber = {1354348}, zbl = {0838.20038}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1995__93__7_0/} }
TY - JOUR AU - Longobardi, Patrizia AU - Maj, Mercede AU - Stonehewer, Stewart TI - The classification of groups in which every product of four elements can be reordered JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 7 EP - 26 VL - 93 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1995__93__7_0/ LA - en ID - RSMUP_1995__93__7_0 ER -
%0 Journal Article %A Longobardi, Patrizia %A Maj, Mercede %A Stonehewer, Stewart %T The classification of groups in which every product of four elements can be reordered %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 7-26 %V 93 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1995__93__7_0/ %G en %F RSMUP_1995__93__7_0
Longobardi, Patrizia; Maj, Mercede; Stonehewer, Stewart. The classification of groups in which every product of four elements can be reordered. Rendiconti del Seminario Matematico della Università di Padova, Tome 93 (1995), pp. 7-26. http://www.numdam.org/item/RSMUP_1995__93__7_0/
[1] On the 4-permutational property, Arch. Math., 48 (1987), pp. 281-285. | MR | Zbl
- - ,[2] LONGOBARDI - M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sci. Mat. Fis. Nat., 74 (1983), pp. 136-142. | MR | Zbl
- P.[3] LONGOBARDI - M. MAJ - D. J. S. ROBINSON, On a permutational property of groups, Arch. Math., 44 (1985), pp. 385-389. | MR | Zbl
- P.[4] Rewriting products of group elements, Lectures given in Urbana in 1985 (unpublished).
,[5] The Theory of Groups, 2nd edition (2 vols.), Chelsea, New York (1960). | MR
,[6] M. MAJ, On groups in which every product of four elements can be reordered, Arch. Math., 49 (1987), pp. 273-276. | MR | Zbl
-[7] Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois J., 35 (1991), pp. 198-219. | MR | Zbl
- ,[8] The classification of groups in which every product of four elements can be reordered, preprint, Warwick University.
- - ,[9] Non-nilpotent groups in which every product of four elements can be reordered, Canadian J., 42 (1990), pp. 1053-1066. | MR | Zbl
- ,