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The Classification of Groups in which Every Product
of Four Elements can be Reordered.

PATRIZIA LONGOBARDI (*) - MERCEDE MAJ (*)
STEWART STONEHEWER

1. Introduction.

There has been considerable interest in groups G for which, given a
fixed integer n &#x3E; 2, every product of n elements can be reordered, i. e.
for all n-tuples (xl , x2 , ... , xn ), there exists a non-trivial ele-

such that

The class of such groups G is denoted by Pn and P denotes the union
of the classes P n, n ;::: 2. Clearly every finite group belongs to P and
each class Pn is closed with respect to forming subgroups and factor
groups. The concept has a strong connection with PI-rings and semi-
group algebras, but our interest here is solely with the groups and in
particular the complete description of the class P4.

Trivially P2 is the class of abelian groups and in [2] P3 was shown to
be precisely those groups G for which the derived subgroup G’ has or-
der - 2. Also the class P is known to coincide with the class of groups G

possessing a subgroup N with I and I N’ I both finite [3]. The
situation with regard to P4 seems to be more complicated. Graham Hig-
man [4] considered the problem and obtained two striking results.
First:

THEOREM 1. If G is ac group with G’ = V4 (the 4-group), then
Ge?4.

(*) Indirizzo degli AA.: Universita di Napoli, Napoli, Italy.
(**) Indirizzo dell’A.: University of Warwick, Coventry, England.
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Secondly

THEOREM 2. A finite group. G of odd order belongs to P4 if and
only if

(i) G is abetian, or

(ü) G ’ ~ I = 3 , or

(iii) ~ G ’ ~ I - 5 and IG/Z(G)I I = 25 .

Next it was shown in [1] that if a finite group G belongs to P4 , then
G’ is nilpotent. This was improved in [6] where all P4-groups were
shown to be metabelian. Then in [9] a complete description of the non-
nilpotent groups in P4 was given:

THEOREM 3. A group G belongs to P4 if and only if one of the fol-
lowing holds:

(i) G has an abelian subgroup of index 2;
(ii) G is nilpotent of class £ 4 and G E P4;

(iii) 

(iv) G = B(a, x), where B £ Z(G), a ~ [ - 5 and a x = a 2 .

Finally in [7] finite 2-groups of class 2 in P4 were classified by the
following:

THEOREM 4. Let G be a finite 2-group of class 2 with exp G’ = 2.
Then G E P4 if and only if

(i) G has an abelian subgroups of index 2, or

(ü) !G~ ~4, or
(iii) G’ I = 8 and G/Z(G) can be generated 3 elements, or
(iv) I G’ I = 8, G/Z(G) can be generated by 4 eLements and G is

not diabelian.

Following Philip Hall, a group is said to be diabelian if it is a prod-
uct of 2 abelian subgroups.

These are our starting points in order to characterize all P4-
groups.

As one might intuitively expect, the order of the derived subgroup
of a P4-group turns out to be «nearly always» bounded. The exceptions
are due to the fact that any group G with an abelian subgroup A of in-
dex 2 always belongs to P4. This can be seen without difficulty by dis-
tinguishing cases according to how many of the 4 factors of a product
belong to A. In particular the wreath product G of an arbitrary abelian
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group A and a group of order 2 always belongs to P4 and G’ = A. Thus
there is no restriction (other than commutativity) on the derived sub-
group of a P4-group. Then we shall see that a P4-group which does not
have an abelian subgroup of index 2 has derived subgroup of order at
most 8.

Our classification of P4-group is given in

THEOREM 5. A group G belongs to P4 if and only if one of the fol-
lowing holds:

(i) G has an abelian subgroups of index 2;
(ii) I G’ I ~ 3 ;

(iii) G ’ = v4 ~
(iv) G ’ C4 and G has a subgroups B of index 2 = 2 ;
(v) G ’ = C5 and G/Z(G) is isomorphic to the holomorph of C5 ;
(vi) G ’ = C5 and IG/Z(G)I I = 25;

with C = CG ( G ’ ), !G/C!=2, C’ _

( G ’ ), all subgroups of G ’ are normal in G and G/Z( G ) can be gener-
ated elements;

(viii) G ’ = C2 x C2 x C2 , G has class 2 and either G/Z( G ) can be
generated by 3 elements or G/Z(G) can be generated by 4 elements and
G is not diabelian.

Notation is as follows.

Cn cyclic group of order n,
V4 the 4-group,

symmetric group of degree n,
subgroup generated by elements of order p in a p-group G,

Ui (G) subgroup generated by the p i-th powers of the elements of a p-
group G,

9x 

exp G exponent of G.

In § 2-4 we consider groups with derived subgroup of order 4, 8 and
greater than 8, respectively, and in § 5 we deal with nilpotent groups.
We recall again from [6] that

a P4 -growp is always metabelian

and this will be assumed from now on without further reference. For
convenience we mention some known results (see [7] and [9]) which we
shall use.
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1.1. Let G E P4 and A be an abelian subgroup of G containing G ’ .
Let a, b E A, x, y E G and suppose that [a, x], [ a, y] and [ a, are

all different from 1 and [ b, y] = 1.

(i) If [b, x] has order 2 and commutes with x, then

(ii) If [a, y] has order 2 and commutes with x, then

1.2. Let G be a finite 2-group in P4 and A be an abelian subgroup
of G containing G’ . If G = A(x), then one of the following holds:

1.3. Let G = A x B be a finite with A of odd order and B a
2-group. Then either A or B is abelian.

1.4. Let G be a finite nilpotent of class 2 group in P4 with exp G’ =
= 4. Then G’ = C4.

1.5. Let G be a finite nilpotent of class 2 group with G’ = C4. Then
the following are equivalent:

(i) G E P4; &#x3E;

(ii) there are elements x 2 x3 x4 E G such that 

1.6. Let G be a finite nilpotent of class 2 group with G’ = C4 .
Then G E P4 if and only if G has a subgroups B of index 2 with
|B|=2.

Sometimes in the following sections we shall only sketch technical
proofs, for the sake of brevity. All details can be found in [8].

2. Groups with cyclic derived subgroup of order 4.

If G’ = C4 , then G is nilpotent of class 2 or 3. If G has class 2 and is a
finite- 2-group, then we know already that G E P4 if and only if G has a
subgroup B of index 2 with B’ ~ - 2 (1.6). It turns out that the hypoth-
esis that G is a finite 2-group here is unnecessary (2.2). Also, rather cu-
riously, we find that if G has class 3, then G always belongs to P4 (2.3).
The situation is summed up in 2.4.

First a routine argument (which we omit) establishes
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2.1. For any n, an inverse Limit of Pn-groups belongs to Pn .

Now we can handle the class 2 groups.

2.2. Let G be nilpotent of class 2 with G’ = C4. Then G E P4 if and
only if G has a subgroup B of index 2 with I B’ 2.

PROOF. Let G E P4. We proceed in 3 steps.

(i) Suppose that G is finite,. Then the 2-complement of G is
abelian and so we may assume that G is a 2-group. Then B exists, by
1.6.

(ii) Suppose that G is finitely generated. Then G is residually fi-
nite and there is a subgroup N  G with G/N finite and 1. By
(i), there is a subgroup B of index 2 in G with B ~ N and I (B / N)’ I :s:; 2,
i.e. B’ N/N = B’ has order at most 2.

(iii) ,Suppose that G is arbitrary. In this case, the argument pro-
ceeds by considering a local system of finitely generated subgroups
with derived subgroups equal to G’ and employing the theory of com-
plete projection sets (see [5], volume 2, p. 168).

Conversely, suppose that G has a subgroup B of index 2 with
~ B’ ( ~ 2. In order to prove that G E P4 , we may assume that G is finite-
ly generated and therefore residually finite. Thus, by 2.1, it suffices to
assume that G is finite. Then G E P4 , by 1.6.

Turning our attention to class 3 groups, we have

2.3. Let G be nilpotent of class 3 with G’ = C4 . Then G E P4.

PROOF. Suppose, for a contradiction, that and let Xl X2 Xg X4
be a product which cannot be reordered. Let G’ = (a). Thus [Xl’ x2 ] =

Now Let . Then there exists
1) in Z such that

It follows that « ~ 2 and so a = ± 1. Without loss of generality we may
assume that
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Following the idea of the proof of 1.6, we have

with G’ . Clearly G’ - ~ 1, t, u, v ~. Let = 

Then w = u or v. Distinguishing these possibilities in the light of (1),
we get the required contradiction.

The situation when G’ = C4 can now be summarised in

2.4. Let G’ = C4. Then G E P4 if and only if G has a subgroups B of
index 2 with 2.

PROOF. Let G E P4. If G has class 2, the result follows by 2.2. If G
has class 3, then C = CG (G’ ) has index 2 in G. By the 3-subgroup lem-
ma, [ C’ , G] = 1 and so C’ :s:; Z(G) n G ’ = C2 . Then take B = C.

Conversely, let B ~ G with G : B 1 = 2 and I B’ I :s:; 2. Again 2.2
takes care of the case when G has class 2 and 2.3 gives the other
case.

3. Groups with derived subgroup of order 8.

Since P4-groups are metabelian, we have to consider the case when
G’ is isomorphic to C4 x C2 , C2 x C2 X C2 or C8 . These are discussed in
§§ 3.1, 3.2, 3.3 respectively. In the second case, we shall see that the
P4-groups G all have class 2. Then local arguments can be applied to the
results of § 3.2 of [7] in our final classification in § 5 below. In the third
case, it turns out that the only P4-groups are those with an abelian sub-
group of index 2.

3.1. The case G’ C4 x C2.
The automorhism group of C4 x C~ is dihedral of order 8. Thus if

G ’ = C4 x C2 and C = CG ( G ’ ), then G/C is trivial, the 4-group, cyclic of
order 4 or cyclic or order 2. We distinguish these cases.

3.1.1. Let G be nilpotent of class 2 with G’ a 2-group of exponent
~ 4 and order &#x3E;- 8 Then G ~ P4 .

PROOF. Suppose, for a contradiction, that G E P4 . We may assume
that G is finitely generated, so G ’ is finite and G is residually finite.
Thus there is N a G with G/N finite and N fl G’ = 1. Now the derived
subgroup of G/N is a 2-group of exponent &#x3E; 4 and order &#x3E; 8 and it is the
derived subgroup of the Sylow 2-subgroup P of G/N. By 1.2, P’ has ex-
ponent 4 and therefore P’ = C4 , by 1.4, a contradiction.
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The next two cases are contained in

3.1.2. or (ii)
G/C = C4 , then G ~ P4 .

PROOF. (i) We have G = CX where X = (x, y). We distinguish the
cases X’ = G’ , X’ = C4 and exp X ’ £ 2.

(a) Suppose that X’ = G’ . Then [x, y] = a (say) has order 4 and
(a) Therefore we may assume that (a). Routine checking
shows that, replacing y by xy if necessary, we may further assume that
a y = a -1. Let z = xy. It is then an exercise to show that zxay cannot be
reordered.

(b) Suppose that X’ = C4 . Then X’ a CX = G. Also

For, C’ ~ Z(G) and if (1) were false; then G ’ = C’ X ’ implies G’-
~ Z(G) X’ , i.e. C = CG (X’ ). But then G : C I = 2, a contradiction. There-
fore (1) is true. We may assume that there is an element c E C such that
[c, Let [x, y] = a. Then [c, x] = a°‘ b, where b ~ [ = 2 and G’ _
- ~a) x ~b). Without loss of generality, « = 0 or 1.

If [ a, x = 1, then a Y = a -1 and replacing y by xy if necessary, we
may assume that by = b . Then we obtain [c, y, x] = Suppose that
oc=O. Then [c, -1 ~ ~3 ~ 2. For f3 = ± 1, take c, a, y, x for
a, b, x, y in 1.1 (i) to give G ~ P4. For f3 = 2, let z = xy. Then routine
checking shows that zcyx cannot be reordered. The case ~3 = 0 is cov-
ered replacing c by ca and applying the case f3 = 2. Therefore suppose
that « = 1. Then [c, y ] = 2 and f3 = 0 or 2 is disposed of
by taking c, a, y, x again for a, b, x, y in 1.1 (i). If ,~ _ -1, routine

checking shows that xzcy cannot be reordered (with z = xy still). And if
f3 = 1, replace c by ca again and apply the case f3 _ -1.

Finally suppose that [ a, x] = a 2 . Replacing y by xy if necessary, we
may assume that a y = a. If [ c, (a), then we can argue as above with
~ and y interchanged. On the other hand, if [ c, y ] E (a), then replacing
~ by xy if necessary, we may assume by = b and another routine check
shows that, with c, a, x, y for a, b, x, y in 1.1 (i), G ~ P4 .

(c) Suppose that expX’ ~ 2. It is easy to see that exp [C, X] = 4
and so we may assume that [ c, x ] = a (say) has order 4 for some c E C.
Then [x, yc] has order 4 and replacing y by yc, cases (a) and (b)
apply.

(ii) Here G/C = C4 and G = CX, X = (x~. It is easy to see that
there is an element c E C such that [c, x] = a (say) has order 4. (In fact
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[ C, X ] = G ’ . ) Then G ’ _ ~ a ~ x (b) with b ~ I = 2 and, replacing c by ca if
necessary, we have a x = ab, b x = a 2 b. Taking c, b, X, X2 for a, b, x, y in
1.1 (i) shows that G ~ P4 .

Now we begin the analysis of the final case, where G/C = C2 .

3.1.3. Let and I = 2. Then
either

(i) G has an abelian subgroup of index 2, or
(ii) C’ = all subgroups of G’ are normal in G and

G/Z (G) is 2-generator.

PROOF. Suppose C is not abelian (otherwise (i) is true). Since C’ ~
~ Z(G), C’ ~ G ’ . Thus C’ = C4 , V4 or C2 and we distinguish these
cases.

(a) Suppose that C’ = C4 . Then there are cl , c2 E C such that
[cl , c2 ] = a (say) has order 4. Let G = CX, where X = (x) is cyclic. If
[cl , (a), then with G’ = (a) x (b) ( ~ b ~ I = 2), we have [cl , x] = a’‘ b,
-1 ~ A ~ 2. a 2 b . Taking cl , b, x, c2 for a, b, x, y
in 1.1 (i) (and noting that x - = a - ~ + 2 b ) we find G ~ P4 , a con-
tradiction. Thus [ci,a’]=c~(-l~A~2) and similarly [ c2 , x ] = a ~‘

Now there must exist c3 E C such that = a v b ( -1 ~ v ~ 2).
Let [cl , = a°‘ , [c2 , = a~ ( -1 ~ (x, (3 ~ 2). If oc = ± 1, then the
above argument with c3 for c2 gives G ~ P4 . Therefore « = 0 or 2 and
similarly (3 = 0 or 2. ff A = 1, take c1, X, x 2 for a, b, x, y in
1.1. Since [cal , X2] = a 2 and commutes with cl and x 2 , we can
apply 1.1 (ii) and obtain x] e (a), a contradiction. If ~ _ -1,
replacing cl by cl1 and c2 by c2 1, the same argument applies. Finally if
A = 0 or 2, we obtain a contradiction by choosing CI c2 , x for
a, b, x, y in 1.1 (i). Thus C’ =P C4.

(b) Suppose that C’ = V4. Again let G = CX, with X = (x). Then
there exists CI E C such that [cal , x] = a (say) has order 4. Suppose that

i.e. (a), and let GI = (CI, x, G’). Then Gi = G’ and CI =
But C1 - ~[cl , x2 ]~ = C2 . Since (a) we

shall see in (c) that P4 , a contradiction. Therefore (a)  G and so
ax = a -1, since S21 (G’ ) = C’  Z(G).

If there is an element c2 E C such that [cal , c2 ] = ~a2 ~, then G’ =
= (a) x ~b~. Taking c1, a, x, c2 , for a, b, x, y in 1.1 (i), we find G ~ P4 , a
contradiction. Therefore [cal , C] ~ (a 2). Now there are elements c2 , c3
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in C such that [c2, = b (say) has order 2 and b * a2 . So G’ = (a) x
x (b). By the above argument, [ c2 , x ] and IC3, x ] lie in ( a 2 , b). But
[ciC2, x] = a[c2 , x] = al (say) has order 4 and [ciC2, = [cl , has
order 2 and does not belong to (a2 ~ _ (a 1 2). Then the above argument,
with CI replaced by cl c2 and c2 replaced by c3 , gives G ~ P4 , a

contradiction.

(c) Suppose that C’ = C2. We have to establish (ii). As before let
G = CX with X = (x) and let cl E CI such that [CI, x] = a (say) has order
4. Since C is not abelian, it is not difficult to see that, among such ele-
ments cl , there is one with Z(C). Also the subgroups of order 4 in
G ’ are normal in G. Moreover, C’ = T~1 ( G ’ )( _ ( a 2 )) . For, if not, then
DI ( G ’ ) = UI ( G ’ ) x C’ ~ Z(G) and so a x = a -1. Also there exists c2 E C
such that [CI, C2] = b of order 2 (since ci w Z(C)) and G’ = (a) x (b).
Choosing cl , a, x, c2 for a, b, x, y in 1.1 (i), we fmd G ~ P4 . Thus our
claim follows.

Let G ’ - (a) x (b). It is straightforward to show there is c2 E C with
[c2 , x] = b and [cl , c2 ] = a2 . Then

(2) all subgroups of G’ are normal in G .

For, if not, changing a if necessary, we may assume that ax = a. But
then, with ul = X, U2 = c1 c2 , U3 = Cl 1 X, U4 = c2 , routine checking shows
that ul u2 U3 U4 cannot be reordered. So (2) holds. It remains to show
that G/Z(G) can be generated by 2 elements. Let Co = Then C =
= (cal , c2 ~ Co and it suffices to show that Co ~ Z(G).

Let d, and write [d, e] = r, [d, f ] = s, [d, g] = t, [e, f ] =
= u, [e, g] = v, [ f, g] = w. Con-

sidering the 23 reorderings of defg, we find that at least one of the fol-
lowing holds:

If c2 ~, Co ] ~ 1, then there is c3 e Co such that

In each case, take (respectively) d = = X, f = Cl C3, g = or

or In
each case, none of the relations (3) holds. Thus [(ci, c2 ~, Co ] = 1 and it
suffices to show that Co is abelian. If not, then there are elements
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c4 E Co such that [ c3 , c4 ] = a 2 . Take d = c2 e = x, f = cl c4 , g = c3 .
Again none of the relations (3) holds. This contradiction completes the
proof of 3.1.3.

In the opposite direction, we have

3.1.4. G/C ~ I = 2, 
all subgroups of G ’ normal in G and suppose that G/Z(G) is 2-genera-
tor. Then G E P4 .

PROOF. Suppose, for a contradiction, that G ~ P4 . By hypothesis
there are elements such that C = ~ c1, c2 ~ Z( G ). Let G =
= CX, X = ~x). Then G’ = [C, X] and we may assume that [cl , x] = a
(say) has order 4. Thus G ’ _ ~ a ~ x (b) with b ~ I = 2. Replacing c2 if

necessary, we may also assume that [c2 , X] = b. Note that [cl , c2 ] =
= a2.

Now there are elements d, e, f, g E G such that defg cannot be re-
ordered. Suppose that e E C while d, f, g E C. Without loss of generali-
ty, e = x. Let d = = ci c2 and let r, ... , w be the com-
mutators as in 3.1.3 (c). Since fg ~ gf, w = a 2 . and
so

Now r = and since de ~ ed and defg ~ Thus either
A = 1(2) or IA --- 1(2). Suppose that s = 1, i. e. alA + (3À = 0(2). One checks
that A = a ( 2 ),

and t = a2, i.e. A77 --- 1(2). Then, since def ~ fed and defg ~ fegd,
But ru = and this contradicts (5). Thus s = a2.

Similarly if t = 1, we get contradictions to defg ~ gedf or gefd, and
therefore

By (4), and and so G’ _ (a2, u, v). But r ~ ~a2) and
so ru, rv or The first possibility is ruled out as above,
the second contradicts (6), while defg ~ fged or gfed shows that

ruv EA2&#x3E;
Using the facts that C e P3 and that cannot be re-

ordered, there are 7 remaining cases depending on which of d, e, f, g
belong to C and they are handled in the same fashion. (See [8] for
details.) 0
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Summarising the results of 3.1, we have proved

3.1.5. Let G ’ = C4 x C2 . Then G E P4 if and only if C = CG ( G ’ ) has
index 2 in G, C’ _ ~ 1 ( G ’ ), all subgroups of G ’ are normal in G and

2-generator.

3.2. The case 

Suppose that G is nilpotent of class -&#x3E; 3 with G’ = C2 x C2 x C2. We
show that then G/C = C2 x C2 , C4 or C2 . We dis-
tinguish these cases.

3.2.1. Let G be nilpotent with G ’ = C2 x C2 x C2 , C = CG ( G ’ ) and
G/C = C2 x C2 . Then G ~ P4.

PROOF. Let G = CX, where X = (x, y). Then X’ a G and we consid-
er 4 possibilities for X’ .

(i) Suppose that X’ = G’ . It is routine to check that there is a
basis ~a, b, c} of G’ such that ax = ab, bx = b, cx = c, ay = ac, by = b,
c y = c and [x, y ] = a. But then cannot be reordered, where

Therefore G ft P 4 .

(ii) Suppose that X’ = C2 x C2. We can take X’ _ (b, c), [x, y] =
Clearly and

since C’ Z(G), we have C = CG ([C, X] X’ ). Thus, by hypothesis,
[ C, X] X’ G’ and so there is an element cl E C such that either

[ci , x] f1. X’ or [cl, y] o X’ . If [c1, x] E X’, then [c1, y] = a ~ X’ and
we can show that G’ = (a) x (b) x (c) with ax = a, ay = ac,
1 ~ [cal, [cal, y ] ~ 1 mod ~ c ~. Then the hypotheses of 1.1 (i) are satis-
fied with for a, b, x, y . Since [a, y] = c, it follows that

GEP4.

Suitable substitutions for x and y reduce the second possibility
([cl , x] ~ X’ ) to the case just handled.

(iii) Suppose that X’ = C2. Let [x, y] = c. Thus 1 ~ c E Z(G).
Now C’ X ’ ~ Z(G), and so G’ = [ C, X ]. Therefore we may assume that
there is an element c1 E C such that Then [ x, =

= by c g (c). But by cases (i) and (ii) we may assume that (x, CI y)’ has or-
der 2 and so i. e. b E Z( G ). Therefore I = 4.
Choose C2 E X and - = 0 or 1 such that
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Then

Therefore and G ~ P4 by cases (i) and (ii).

(iv) Finally suppose that X is abelian. Again G = [C, X] and so
there is an element CI E C such that, without loss of generality,
[cl , x] = c ~ 1. Then [x, cl y] = 1 and (x, cl y) is not abelian. Thus
G ~ P4 by the previous cases.

The next case is much easier.

PROOF. Let G = CX with X = ~x~. Then G’ = C’ [C, X] and since
C’ ~ Z(G), it follows that G’ = [ C, X]. One sees easily that G ’ is inde-

composable as an X-module. Choose a basis {a, b, c} of G’ such that
[a, x] = b, [b, x] = c, [c, x] = 1. Also choose CI E C such that [cl , x] _
= abac", 0 :s:; À, [J. :s:; 1. Then x] = a and replacing cl by a À bfJ. CI
we may assume that [cal, x] = a. Taking cl , b, x, x 2 for a, b, x, y in 1.1
(i) we find 

The final case is

3.2.3. Let G be nilpotent with G ’ = C2 X C2 X C2 , C = CG ( G ’ ) and
I GIC I = 2. Then 

PROOF. There is a basis {a, b, c} of G’ such that a x = ab, b x = b,
c x = c. Also G ’ = C’ [ C, X] and C ’ % (b, c) since C ’ 5 Z(G). We may as-
sume that if CI E C and [cl , (b, c), then [cl , C] ~ (b). For, if not,
then there exists c2 e C such that [c1, (b). Then taking CI, a, x, C2
for a, b, x, y in 1.1 (i) we see that G ~ P4. Now it is not hard to see that
[C, b~ and we can find cl , c3 E C such that [cl , x] = ab" c r,
[ c3 , x] and [cal, = 1. Taking CI, X, x 2 for a, b, x, y in 1.1 (i)
shows that G ~ P4 .

Summarising the previous 3 results, we have

3.2.4. Let G be nilpotent of class ~ 3 with G’ = C2 X C2 x C2. Then
G~P4.
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3.3. The case 

Finally for groups G with I = 8 we have

3.3.1. Let G’ = Cg and suppose that G does not have an abetian sub-
group of index 2. Then P4 .

PROOF. Suppose that G has class 2. Using 2.1, we may assume that
G is a finite 2-group. But then by 1.2.

Now suppose that class G ~ 3. Let C = CG (G’ ). Then G/C is either
the 4-group or of order 2 and we distinguish these cases.

Case (i). Suppose that GIC = C2 x C2. Let G = CX, where X =

- ~x, y). Thus G’ - C’ [C, X] X’ and since C’ ~ Z(G), C’  G’ and we
have G ’ - [ C, X ] X ’ . Let G ’ - ~ a ~. If X ’ ~ (a 2), then there are elements
c E C, z e XBC such that [c, z] = a. Choose t E X such that G = C(z, t).
Then [ct, z] = (some integer i) and so [ct, z ] E  a 2&#x3E;. Therefore re-
placing X by (ct, z), we may assume that X’ = G’ = (a). Thus, without
loss of generality, [ x, y ] = a, a x = a -1, aY = as. Let z = xy . Then it is
routine to check that xayz cannot be reordered and so G ~ P4 .

Case (it). Suppose that I GIC I = 2. Now G = CX with X = (x) and
G’ = [ C, X ]. So there is an element c E C such that [ c, x ] = a (say) gen-
erates ), then [a, x] = a 2i and [ c, X2] =
= a2(i + I) . Take c, a, x, x 2 for a, b, x, y in 1.1. If i = = a 4
and 1.1 (ii) fails; while if i = 2, then [ a, x] = a~ and 1.1 (i) fails. Thus
G~P4.

Therefore we may suppose that a x = a -1. Since C’ ~ Z(G), C’ ~
~ ~a4 ~. By hypothesis C’ ~ 1 and so C’ = (a 4). Then there are elements
cl , c2 E C such that

For, certainly there are elements such that [ c1, c2 ] = a 4 .
Thus suppose that [cal, xlE (a 2). If [ c1 c, c2 ] = 1, then [ c, c2 ] = a 4 and
we can take cl = c. On the other hand, if [ c1 c, c2 ] = a 4 , then since
[tic, we can take cl c for cl . Therefore we have (7) and so we
may assume that [cl , x] = a. Then = a. Take cl , a, x, c2 for

a, b, x, y in 1.1 (ii). We find that G,% P4 .

4. Derived subgroups of order exceeding 8.

We shall prove that if G E P4 and G does not have an abelian sub-
group of index 2, then ~G’~ ~8. Finite groups are considered in 4.2
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and infinite groups in 4.3. In the finite case we argue by induction
on order and in anticipation of this we derive some technical results
in 4.1.

4.1. Groups with a metabelian subgroup of index 2.

Throughout this subsection we assume that

G ~ P4 , G does not have an abelian subgroup of index 2,
N  G, N ~ G’ , G/N has an abelian subgroups B/N of index 2 and
G = (B, h).

By rank we always understand Priifer rank.

4.1.1. G ’ /N has rank ~ 2.

PROOF. Suppose, for a contradiction, that Clearly
we may assume that B’ = N and it is not difficult to show that there are
elements w, x, y E B such that

Then we claim that wxhy cannot be reordered. For, wxhy = 
and modulo N every reordering of wxhy is uniquely expressible as

with ex, (3, y E ~ 0, -1 }. Let ~ = « + (3 + y and a = Thus with ...

representing factors in a reordering (8) of wxhy, h ... has A = - 3,
.h.. has =-2 and
a = r -1 and xwhy ~ wxhy. Thus our claim follows, contradicting
GEP4.

Next we consider some cases when G’ has rank 2.

PROOF. Suppose, for a contradiction, that 7n * 3. Since B is not
abelian, B’ = N. Then G’ = N[B, h] = [B, h]. Again it is not difficult to
find elements x, y E B such that

Thus [x, h] = ai bj (i odd) and [x2 , h] ’== Let z = X2. Then
[ y, z ] = 1 and yxhz = mod N. By considering the position
of h in reorderings of yxhz (as in 4.1.1 and again working modulo N
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when convenient), we find that yxhz cannot be reordered, contradict-
ing GEP4- ..

PROOF. Suppose, for a contradiction, that G’ = C4 x C4 and let
G’ = (a) x (b~ with N = (a2 ~. Then B’ = N and G’ = [B, h]. As in 4.1.2
there are elements x, y E B such that [ x, y ] = a 2 , [ x, h] = abj (replac-
ing a by a -’ if necessary). We may assume that j = 0 or 1. In the for-
mer case, we may assume (replacing y by a suitable element if necess-
ary) that [y, h] = b. Thus [y2 , h] = Then easy
checking shows xyhz cannot be reordered. In the second case, when
[x, h] = ab, we may assume that [y, (a2, b). Thus [y, h] = aibk
where either (i) i is odd and 1~ is even or (ii) i is even and k is odd. If (i)
holds, then the previous case applies with x and y interchanged. Thus
(ii) holds. Replacing a by and b by gives [y, h] = Then the

previous case applies with xy and x for x and y.

4.2. Bounding G’ ~ : : the finite case.

Suppose that G e P4 and G does not have an abelian subgroup of in-
dex 2. If I G’ I &#x3E; 5, then G is nilpotent, by Theorem 3. Thus if G is fi-
nite, then G = A x B with A a 2-group and B ~ I odd. If B ’ ~ 1, then 1.3
shows that A is abelian; and I B’ I = 3 or 5, by Theorem 2. Thus B must
be abelian and in order to prove that I G’ 8, we may assume that G
is a 2-group.

4.2.1 Let G be a finite- group in P4 . Then either G has an abelian
subgroup of index 2 our I :s:; 8.

PROOF. Suppose that G does not have an abelian subgroup of index
2. Thus we may assume that G is a 2-group (see above).

Assume, for a contradiction, that I ~ 16 and let exp G ’ - 2e .
Choose and with N ~ ~e _ 1 (G’ ). Then

(9) G/N does not have an abetian subgroup of index 2 .

For, suppose that this is not the case. Then, by 4.1.1, rank G’ /N ~ 2
and therefore rank G ’ ~ 3. If rank G ’ = 3, then e ~ 2 and since N ~
~ ~( G ’ ), rank G ’ /N = 3. Thus rank G ’ £ 2 and so, by 4.1.2, e ~ 2. Since
I G’ I ~ 16, we would have G’ C4 x C4 , contradicting 4.1.3. Then (9)
follows.

By induction on , we may assume that I = 8 and so
~G’~ =16. We distinguish the cases in which G’ is isomorphic to
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(Recall that G’ =; C16, oth-
erwise = Cg , contradicting 3.3.1.)

Case (i). ,Suppose that , Here N =
= (a4) and i

acnd N:S:; X :s:; G’ implies X a G .

Therefore C’ = ~a2 ~. Let G = (C, h). Thus G’ = C’ [C, h] = [C, h] since
a2 E Ø(G’). Also [ a, and therefore [ a 2 , C] = 1. Then we easily
find elements such that [ x, y ] = a 4 and I = 8 . Now

[ b, h] E N and h 0 C. Therefore [ a, N and so

Let H = ~x, y, h, G’ ), K = ~x, y, h2 , G’ ). Thein either H’ - G’ or

H’ = C8 . K ’ and K £ C. Thus K ~ I = 2 and K Let
C * = CH (H’IN). Then K  C * and so C * = K, since C * (by (11)).
But K is not abelian and therefore H does not have an abelian subgroup
of index 2. However, by (10) and (11), [C, h 2 ]  N and thus K/N is
abelian. Then H/N has an abelian subgroup of index 2, contradicting
4.1.2.

Case (it). Now suppose that G’ = (a) x (b), lal ] - ~ b ~ ] = 4. We can
take N = ~ a 2 ). As in (i), C = CG ( G ’ /N) has index 2 in G and (C/Nl’ =
= C’  (a 2, b2). All subgroups of are normal in G/N
and so (a)G. By assumption, C’ ~ 1. Also C’ ~ ~ 2 (by 4.1.3). Thus
C’= (a 2 , b2) _ (P(G’). Then with G = (C, h), we have G’ = [C, h]. Since

and C’ ~ Z(G). By
4.1.3, cannot have an abelian subgroup of index 2 and thus, by
3.1.3, ~b) a G. Similarly Therefore, by conjugation, h inverts
a and b and thus every element outside C does the same. Hence

C = CG (G’ ).

In a routine way we find elements x, y e C such that (replacing a
and b by suitable elements if necessary) [x, y] ~ 1, [x, h] = a, [y, h] =
= b. Let H = (x, y, h, G’ ), K = (x, y, h2 , G’ ). So H’ = G’ and clearly

I = 2. Since [C, h 2 ] = 1, Kl([x, y]) is abelian and hence Hl([x, y])
has an abelian subgroup of index 2. If H has an abelian subgroup A of
index 2, then H’  A  CH ( G ’ ) = K and so A = K, contradicting K’ ~ 1.
Thus H does not have an abelian subgroup of index 2, contradicting
4.1.3.

For the remaining case, we need the following two results.
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4.2.2. Let G = (xi, x2 , be nilpotent of class 2 with G’ of exp-
nent 2. Suppose that there is an such that

Xl X2 X3 = 2’«(2) Then G ~ ~ 4.

The proof can safely be left as an easy exercise.

4.2.3. Let G E P4 and N £ Z(G) with G/N nilpotent of class 2. Let
x2 , G with the property that the only element a such that

mod N is a = 1. Then for all a E G’ , [a, x1 ] = 1 if
and only if [a, = 1.

Again the proof is an exercise-assume [ a, xl ] = 1 and consider a
reordering of Xl X2 X3 a.

PROOF OF 4.2.1 CONTINUED. Case (iii). Finally suppose that

G’ /N = C2 x C2 x C_2 . Let bars denote subgroups and elements of G
modulo N. By 3.2.4, _G has class 2 and by Theorem 4 either (a) G/Z(G) is
3-generator or (b) G/Z( G ) is 4-generator and G is not diabelian.

Consider case (a) where G = (Z(G), xl , x2 , Then x2 , X3), is
elementary of rank 3. Let a E G’ . Since G: CG (a, N~ ~ ~ 2, we may as-
sume that [a, xl ] = 1. By 4.2.2, neither nor can be re-
ordered. Therefore, by 4.2.3, [ a, x3 ] = 1 and hence [ a, x2 ] = 1. Let
c E Z(C) Replacing X2 in the above argument by cx2 , we obtain similarly
[a, = 1, i. e. [a, c] = 1. Thus a E Z(G) and therefore G ’  Z(G). But
this contradicts Theorem 4. 

_ _

_ 
Now suppose that case (b) holds. By 3.2.6 of[7], G_= (A, x, y) with

A a G, A abelian; and G is not diabelian. By choosing A as large as pos-
sible, we may assume that N ~ A and so G = (A, x, y). Again we claim
that class G = 2. For, let a E G ’ . As before, we may assume that
[a, x] = 1 _. Since G/A is elementary, it follows from (9) that GIA C2 x
x 1. Thus we can find c E A such that [ c 1. Let z =
= cx. Since G is not diabelian, it follows easily that xyz cannot be re-
ordered. Therefore, by 4.2.3, [ a, z] = 1 and so [ a, c] = 1. Since A is
generated by such elements c, it follows that [ a, A ] = 1. Also

[A, x ] ~ 1 ~ [A, and therefore U Thus there is
an element d E A such that [ d, ~ ] ~ 1 ~ [ d, y x ]. As before, it follows

easily that y x d cannot be reordered. (If = d x y, then [ d x, = 1

and G would be diabelian.) Since [ a, d] = 1, 4.2.3 gives
[ a, y ] = 1. Thus a E Z(G) and so G ’ ~ Z(G), as claimed. As in case (a),
this contradicts Theorem 4.
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4.3. Bounding I G’ I: : the general case.

First, a straightforward inverse limit argument (see, for

example [5], vol. 2, p. 167) gives

4.3.1. Suppose that every finitely generated subgroup of G is
abelian or has an abetian subgroups of index 2. Their either G is abelian
or G has an abelian subgroup of index 2.

Now we can establish

4.3.2. Let G E P4 . Then either G has an abelian subgroup of index 2
or I G’ I ~8.

PROOF. As we saw at the beginning of 4.2, we may assume that G
is nilpotent.

(i) Suppose that G is finitely generated. Then G’ is finitely gen-
erated and has finite exponent ([3], 2.2). Thus G’ is finite. Also G is

residually finite and so there is N a G with G/N finite and G’ = 1.
If G/N has an abelian subgroup A/N of index 2, then A is abelian and
has index 2 in G. On the other hand, if G/N does not have an abelian
subgroup of index 2, then I G’ I = 8, by 4.2.1.

(ii) Now suppose that G is arbitrary. Suppose that G is not
abelian and does not have an abelian subgroup of index 2. By 4.3.1,
there is a finitely generated subgroup X of G with the same properties.
If G’ I &#x3E; 8, then, by enlarging X if necessary, we may assume that

I &#x3E; 8. But this would contradict (i). Thus 8.

5. Nilpotent P4-groups.

The classification of the nilpotent P4-groups is as follows.

5.1. Let G be a nilpotent group. Then G E P4 if and only if one of the
following holds:

(i) G has an abelian subgroup of index 2;
(in) I ~ 3 ;

(iii) G =V4 ;
(iv) G’ C4 and G has a subgroup B of index 2 with I B’ [ = 2;

(v) G’ = C5 and IGIZ(G)I I = 25;
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(vi) with C = CG ( G ’ ), ~ IGIGI =2, 
all subgroups of G ’ are normal in G and G/Z(G) is 2-generator;

(vii) G’ = C2 x C2 x C2 , G has class 2 and either G/Z(G) is 3-gen-
erator or GIZ(G) is 4-generator and G is not diabelian.

PROOF. Let G E P4 and suppose that (i) does not hold. By 4.3.2,
~ G’ ~ ~ 8. Routine arguments allow us to assume that G is finitely gen-
erated. Then, as in 4.3.2 (i), there is a finite quotient G/N with
(G/N)’ = G’ . Therefore, by 1.3 and Theorem 2, either G’ ~ ~ 5 or
~ G’ ~ I = 8. If ~G~ ~4, then G satisfies (ii), (iii) or (iv) (by 2.4). Suppose
that G ’ ~ I = 8. By 3.3.1, G ’ WC ; and if G ’ = C4 x C2 , then G satisfies
(vi), by 3.1.3. Thus we may assume that G’ = C2 x C2 x C2. By 3.2.4,
class G = 2 and so G/Z( G ) is a finite elementary abelian 2-group. Let
L = Z(G) Then G/L is finite and Z(G/L) = Z(G)/L. By Theo-
rem 4, G/L modulo its centre has rank - 4 and hence rank 4.
Also if rank G/Z(G) = 4 and G is diabelian, then G/L has structure con-
tradicting Theorem 4. Thus G satisfies (vii). Finally, if I G’ I = 5, then,
by Theorem 2, G/Z(G) has order 25 modulo its centre, namely
Z( G )/Z( G ) f 1 N. Thus I = 25 and (v) holds.

Conversely, if G satisfies (i), then G E P4 , by Theorem 3. If 
= 2, then G E P3 , by [2]. Suppose that ( G’ ~ I = 3. To show that G E P4 , we
may assume that G is finitely generated and, by 2.1, even finite and
hence a 3-group. Then G E P4 , by Theorem 2. If (iii) holds, then G E P4 ,
by Theorem 1. If G satisfies (iv), then G E P4 , by 2.4.

Suppose that (v) holds. To show that G E P4 , again we may assume
that G is finite and hence a 5-group and the result follows from Theo-
rem 2. If (vi) holds, 3.1.4 shows that G E P4 . Finally, suppose that G
satisfies (vii). We may assume that G is finitely generated and so Z(G)
is finitely generated. If B is a complement in Z(G) of the 2-component
of Z(G), then it suffices to show that G/B E P4 , since G embeds in
G/B x G/G’ . But G/B is a finite 2-group and satisfies (vii) and so
G/B E P4 , by Theorem 4.

Taking Theorem 3 and 5.1 together, we have a complete description
of P4-groups and their structure is as described in Theorem 5 of § 1.
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