RENDICONTI

SEMINARIO MATEMATICO

 della
Università di Padova

Patrizia Longobardi

Mercede Maj
Stewart Stonehewer

The classification of groups in which every product of four elements can be reordered

Rendiconti del Seminario Matematico della Università di Padova, tome 93 (1995), p. 7-26
http://www.numdam.org/item?id=RSMUP_1995_-93_7_0
© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

The Classification of Groups in which Every Product of Four Elements can be Reordered.

Patrizia Longobardi (*) - Mercede Maj(*)
Stewart Stonehewer (**)

1. Introduction.

There has been considerable interest in groups G for which, given a fixed integer $n \geqslant 2$, every product of n elements can be reordered, i.e. for all n-tuples ($x_{1}, x_{2}, \ldots, x_{n}$), $x_{i} \in G$, there exists a non-trivial element $\sigma \in \Sigma_{n}$ such that

$$
x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}=x_{1} x_{2} \ldots x_{n} .
$$

The class of such groups G is denoted by P_{n} and P denotes the union of the classes $P_{n}, n \geqslant 2$. Clearly every finite group belongs to P and each class P_{n} is closed with respect to forming subgroups and factor groups. The concept has a strong connection with PI-rings and semigroup algebras, but our interest here is solely with the groups and in particular the complete description of the class P_{4}.

Trivially P_{2} is the class of abelian groups and in [2] P_{3} was shown to be precisely those groups G for which the derived subgroup G^{\prime} has order $\leqslant 2$. Also the class P is known to coincide with the class of groups G possessing a subgroup N with $|G: N|$ and $\left|N^{\prime}\right|$ both finite[3]. The situation with regard to P_{4} seems to be more complicated. Graham Higman [4] considered the problem and obtained two striking results. First:

Theorem 1. If G is a group with $G^{\prime} \cong V_{4}$ (the 4 -group), then $G \in P_{4}$.
(*) Indirizzo degli AA.: Università di Napoli, Napoli, Italy.
(**) Indirizzo dell'A.: University of Warwick, Coventry, England.

Secondly

Theorem 2. A finite group G of odd order belongs to P_{4} if and only if
(i) G is abelian, or
(ii) $\left|G^{\prime}\right|=3$, or
(iii) $\left|G^{\prime}\right|=5$ and $|G / Z(G)|=25$.

Next it was shown in [1] that if a finite group G belongs to P_{4}, then G^{\prime} is nilpotent. This was improved in [6] where all P_{4}-groups were shown to be metabelian. Then in [9] a complete description of the nonnilpotent groups in P_{4} was given:

Theorem 3. A group G belongs to P_{4} if and only if one of the following holds:
(i) G has an abelian subgroup of index 2;
(ii) G is nilpotent of class $\leqslant 4$ and $G \in P_{4}$;
(iii) $G^{\prime} \cong V_{4}$;
(iv) $G=B\langle a, x\rangle$, where $B \leqslant Z(G),|a|=5$ and $a^{x}=a^{2}$.

Finally in [7] finite 2 -groups of class 2 in P_{4} were classified by the following:

Theorem 4. Let G be a finite 2 -group of class 2 with $\exp G^{\prime}=2$. Then $G \in P_{4}$ if and only if
(i) G has an abelian subgroup of index 2, or
(ii) $\left|G^{\prime}\right| \leqslant 4$, or
(iii) $\left|G^{\prime}\right|=8$ and $G / Z(G)$ can be generated 3 elements, or
(iv) $\left|G^{\prime}\right|=8, G / Z(G)$ can be generated by 4 elements and G is not diabelian.

Following Philip Hall, a group is said to be diabelian if it is a product of 2 abelian subgroups.

These are our starting points in order to characterize all P_{4} groups.

As one might intuitively expect, the order of the derived subgroup of a P_{4}-group turns out to be «nearly always» bounded. The exceptions are due to the fact that any group G with an abelian subgroup A of index 2 always belongs to P_{4}. This can be seen without difficulty by distinguishing cases according to how many of the 4 factors of a product belong to A. In particular the wreath product G of an arbitrary abelian
group A and a group of order 2 always belongs to P_{4} and $G^{\prime} \cong A$. Thus there is no restriction (other than commutativity) on the derived subgroup of a P_{4}-group. Then we shall see that a P_{4}-group which does not have an abelian subgroup of index 2 has derived subgroup of order at most 8 .

Our classification of P_{4}-group is given in
Theorem 5. A group G belongs to P_{4} if and only if one of the following holds:
(i) G has an abelian subgroup of index 2;
(ii) $\left|G^{\prime}\right| \leqslant 3$;
(iii) $G^{\prime} \cong V_{4}$;
(iv) $G^{\prime} \cong C_{4}$ and G has a subgroup B of index 2 with $\left|B^{\prime}\right|=2$;
(v) $G^{\prime} \cong C_{5}$ and $G / Z(G)$ is isomorphic to the holomorph of C_{5};
(vi) $G^{\prime} \cong C_{5}$ and $|G / Z(G)|=25$;
(vii) $G^{\prime} \cong C_{4} \times C_{2}$ and, with $C=C_{G}\left(G^{\prime}\right), \quad|G / C|=2, \quad C^{\prime}=$ $=\mho_{1}\left(G^{\prime}\right)$, all subgroups of G^{\prime} are normal in G and $G / Z(G)$ can be generated by 2 elements;
(viii) $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$, G has class 2 and either $G / Z(G)$ can be generated by 3 elements or $G / Z(G)$ can be generated by 4 elements and G is not diabelian.

Notation is as follows.
$C_{n} \quad$ cyclic group of order n,
V_{4} the 4-group,
$\Sigma_{n} \quad$ symmetric group of degree n,
$\Omega_{1}(G)$ subgroup generated by elements of order p in a p-group G,
$\mho_{i}(G)$ subgroup generated by the p^{i}-th powers of the elements of a p group G,
$g^{x} \quad x^{-1} g x$,
$[x, y] \quad x^{-1} y^{-1} x y$,
$\exp G$ exponent of G.
In §2-4 we consider groups with derived subgroup of order 4,8 and greater than 8 , respectively, and in $\S 5$ we deal with nilpotent groups. We recall again from [6] that

a P_{4}-group is always metabelian

and this will be assumed from now on without further reference. For convenience we mention some known results (see[7] and [9]) which we shall use.
1.1. Let $G \in P_{4}$ and A be an abelian subgroup of G containing G^{\prime}. Let $a, b \in A, x, y \in G$ and suppose that $[a, x],[a, y]$ and $\left[a, x^{-1} y\right]$ are all different from 1 and $[b, y]=1$.
(i) If $[b, x]$ has order 2 and commutes with x, then

$$
[b, x]=[a, x],[a, y] \text { or }[a, x][y, a]
$$

(ii) If $[a, y]$ has order 2 and commutes with x, then

$$
[b, x]=1,[a, x],[a, y] \text { or }[a, x][a, y]
$$

1.2. Let G be a finite 2-group in P_{4} and A be an abelian subgroup of G containing G^{\prime}. If $G=A\langle x\rangle$, then one of the following holds:
(1) $\left[A, x^{2}\right]=1$;
(2) $G^{\prime} \cong V_{4}$;
(3) $G^{\prime} \cong C_{4}$ and $G^{\prime} \leqslant Z(G)$.
1.3. Let $G=A \times B$ be a finite P_{4}-group with A of odd order and B a 2-group. Then either A or B is abelian.
1.4. Let G be a finite nilpotent of class 2 group in P_{4} with $\exp G^{\prime}=$ $=4$. Then $G^{\prime} \cong C_{4}$.
1.5. Let G be a finite nilpotent of class 2 group with $G^{\prime} \cong C_{4}$. Then the following are equivalent:
(i) $G \notin P_{4}$;
(ii) there are elements $x_{1}, x_{2}, x_{3}, x_{4} \in G$ such that $\left[x_{1}, x_{2}\right]=$ $=\left[x_{2}, x_{3}\right]=\left[x_{3}, x_{4}\right]$ of order 4 and $\left[x_{1}, x_{3}\right]=\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=1$.
1.6. Let G be a finite nilpotent of class 2 group with $G^{\prime} \cong C_{4}$. Then $G \in P_{4}$ if and only if G has a subgroup B of index 2 with $\left|B^{\prime}\right|=2$.

Sometimes in the following sections we shall only sketch technical proofs, for the sake of brevity. All details can be found in [8].

2. Groups with cyclic derived subgroup of order 4.

If $G^{\prime} \cong C_{4}$, then G is nilpotent of class 2 or 3 . If G has class 2 and is a finite 2 -group, then we know already that $G \in P_{4}$ if and only if G has a subgroup B of index 2 with $\left|B^{\prime}\right|=2$ (1.6). It turns out that the hypothesis that G is a finite 2 -group here is unnecessary (2.2). Also, rather curiously, we find that if G has class 3 , then G always belongs to P_{4} (2.3). The situation is summed up in 2.4.

First a routine argument (which we omit) establishes

2.1. For any n, an inverse limit of P_{n}-groups belongs to P_{n}.

Now we can handle the class 2 groups.
2.2. Let G be nilpotent of class 2 with $G^{\prime} \cong C_{4}$. Then $G \in P_{4}$ if and only if G has a subgroup B of index 2 with $\left|B^{\prime}\right| \leqslant 2$.

Proof. Let $G \in P_{4}$. We proceed in 3 steps.
(i) Suppose that G is finite. Then the 2 -complement of G is abelian and so we may assume that G is a 2 -group. Then B exists, by 1.6.
(ii) Suppose that G is finitely generated. Then G is residually finite and there is a subgroup $N \triangleleft G$ with G / N finite and $N \cap G^{\prime}=1$. By (i), there is a subgroup B of index 2 in G with $B \geqslant N$ and $\left|(B / N)^{\prime}\right| \leqslant 2$, i.e. $B^{\prime} N / N \cong B^{\prime}$ has order at most 2 .
(iii) Suppose that G is arbitrary. In this case, the argument proceeds by considering a local system of finitely generated subgroups with derived subgroups equal to G^{\prime} and employing the theory of complete projection sets (see[5], volume 2, p. 168).

Conversely, suppose that G has a subgroup B of index 2 with $\left|B^{\prime}\right| \leqslant 2$. In order to prove that $G \in P_{4}$, we may assume that G is finitely generated and therefore residually finite. Thus, by 2.1 , it suffices to assume that G is finite. Then $G \in P_{4}$, by 1.6.

Turning our attention to class 3 groups, we have

2.3. Let G be nilpotent of class 3 with $G^{\prime} \cong C_{4}$. Then $G \in P_{4}$.

Proof. Suppose, for a contradiction, that $G \notin P_{4}$ and let $x_{1} x_{2} x_{3} x_{4}$ be a product which cannot be reordered. Let $G^{\prime}=\langle a\rangle$. Thus $\left[x_{1}, x_{2}\right]=$ $=a^{\alpha},\left[x_{1}, x_{3}\right]=a^{\beta},\left[x_{1}, x_{4}\right]=a^{\gamma},\left[x_{2}, x_{3}\right]=a^{\lambda},\left[x_{2}, x_{4}\right]=a^{\mu},\left[x_{3}, x_{4}\right]=$ $=a^{\nu}$, where $-1 \leqslant \alpha, \beta, \gamma, \lambda, \mu, \nu \leqslant 2$. Also $a^{x_{i}}=a^{\varepsilon_{i}}, \varepsilon_{i}= \pm 1,1 \leqslant i \leqslant 4$. Now $G /\left\langle a^{2}\right\rangle \in P_{3}$. Let $y_{1}=x_{1} x_{2}, y_{2}=x_{3}, y_{3}=x_{4}$. Then there exists $\sigma(\neq 1)$ in Σ_{3} such that

$$
y_{1} y_{2} y_{3}=y_{\sigma(1)} y_{\sigma(2)} y_{\sigma(3)} a^{2}
$$

It follows that $\alpha \neq 2$ and so $\alpha= \pm 1$. Without loss of generality we may assume that

$$
\left\{\begin{array}{l}
\alpha=1 \tag{1}\\
\text { similarly } \lambda= \pm 1, v= \pm 1
\end{array}\right.
$$

Following the idea of the proof of 1.6, we have

$$
x_{1} x_{2} x_{3} x_{4}=x_{4} x_{1} x_{2} x_{3} t=x_{4} x_{3} x_{2} x_{1} u=x_{4} x_{3} x_{1} x_{2} v
$$

with $t, u, v \in G^{\prime}$. Clearly $G^{\prime}=\{1, t, u, v\}$. Let $x_{1} x_{2} x_{3} x_{4}=x_{4} x_{1} x_{3} x_{2} w$. Then $w=u$ or v. Distinguishing these possibilities in the light of (1), we get the required contradiction.

The situation when $G^{\prime} \cong C_{4}$ can now be summarised in
2.4. Let $G^{\prime} \cong C_{4}$. Then $G \in P_{4}$ if and only if G has $a \operatorname{subgroup} B$ of index 2 with $\left|B^{\prime}\right| \leqslant 2$.

Proof. Let $G \in P_{4}$. If G has class 2, the result follows by 2.2. If G has class 3 , then $C=C_{G}\left(G^{\prime}\right)$ has index 2 in G. By the 3 -subgroup lemma, $\left[C^{\prime}, G\right]=1$ and so $C^{\prime} \leqslant Z(G) \cap G^{\prime} \cong C_{2}$. Then take $B=C$.

Conversely, let $B \leqslant G$ with $|G: B|=2$ and $\left|B^{\prime}\right| \leqslant 2$. Again 2.2 takes care of the case when G has class 2 and 2.3 gives the other case.

3. Groups with derived subgroup of order 8.

Since P_{4}-groups are metabelian, we have to consider the case when G^{\prime} is isomorphic to $C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}$ or C_{8}. These are discussed in §§ 3.1, 3.2, 3.3 respectively. In the second case, we shall see that the P_{4}-groups G all have class 2 . Then local arguments can be applied to the results of $\S 3.2$ of [7] in our final classification in $\S 5$ below. In the third case, it turns out that the only P_{4}-groups are those with an abelian subgroup of index 2 .

3.1. The case $G^{\prime} \cong C_{4} \times C_{2}$.

The automorhism group of $C_{4} \times C_{2}$ is dihedral of order 8. Thus if $G^{\prime} \cong C_{4} \times C_{2}$ and $C=C_{G}\left(G^{\prime}\right)$, then G / C is trivial, the 4 -group, cyclic of order 4 or cyclic or order 2 . We distinguish these cases.
3.1.1. Let G be nilpotent of class 2 with G^{\prime} a 2-group of exponent $\geqslant 4$ and order $\geqslant 8$ Then $G \notin P_{4}$.

Proof. Suppose, for a contradiction, that $G \in P_{4}$. We may assume that G is finitely generated, so G^{\prime} is finite and G is residually finite. Thus there is $N \triangleleft G$ with G / N finite and $N \cap G^{\prime}=1$. Now the derived subgroup of G / N is a 2 -group of exponent $\geqslant 4$ and order $\geqslant 8$ and it is the derived subgroup of the Sylow 2 -subgroup P of G / N. By 1.2, P^{\prime} has exponent 4 and therefore $P^{\prime} \cong C_{4}$, by 1.4 , a contradiction.

The next two cases are contained in

> 3.1.2. Let $G^{\prime} \cong C_{4} \times C_{2}$ and $C=C_{G}\left(G^{\prime}\right)$. If (i) $G / C \cong C_{2} \times C_{2}$ or (ii) $G / C \cong C_{4}$, then $G \nsubseteq P_{4}$.

Proof. (i) We have $G=C X$ where $X=\langle x, y\rangle$. We distinguish the cases $X^{\prime}=G^{\prime}, X^{\prime} \cong C_{4}$ and $\exp X^{\prime} \leqslant 2$.
(a) Suppose that $X^{\prime}=G^{\prime}$. Then $[x, y]=a$ (say) has order 4 and $\langle a\rangle \notin X$. Therefore we may assume that $a^{x} \notin\langle a\rangle$. Routine checking shows that, replacing y by $x y$ if necessary, we may further assume that $a^{y}=a^{-1}$. Let $z=x y$. It is then an exercise to show that $z x a y$ cannot be reordered.
(b) Suppose that $X^{\prime} \cong C_{4}$. Then $X^{\prime} \triangleleft C X=G$. Also

$$
\begin{equation*}
[C, X] \nRightarrow X^{\prime} . \tag{1}
\end{equation*}
$$

For, $C^{\prime} \leqslant Z(G)$ and if (1) were false, then $G^{\prime}=C^{\prime} X^{\prime}$ implies $G^{\prime} \leqslant$ $\leqslant Z(G) X^{\prime}$, i.e. $C=C_{G}\left(X^{\prime}\right)$. But then $|G: C|=2$, a contradiction. Therefore (1) is true. We may assume that there is an element $c \in C$ such that $[c, x] \notin X^{\prime}$. Let $[x, y]=a$. Then $[c, x]=a^{\alpha} b$, where $|b|=2$ and $G^{\prime}=$ $=\langle a\rangle \times\langle b\rangle$. Without loss of generality, $\alpha=0$ or 1 .

If $[a, x]=1$, then $a^{y}=a^{-1}$ and replacing y by $x y$ if necessary, we may assume that $b^{y}=b$. Then we obtain $[c, y, x]=a^{2 \alpha}$. Suppose that $\alpha=0$. Then $[c, y]=a^{\beta},-1 \leqslant \beta \leqslant 2$. For $\beta= \pm 1$, take c, a, y, x for a, b, x, y in 1.1 (i) to give $G \notin P_{4}$. For $\beta=2$, let $z=x y$. Then routine checking shows that zcyx cannot be reordered. The case $\beta=0$ is covered replacing c by $c a$ and applying the case $\beta=2$. Therefore suppose that $\alpha=1$. Then $[c, y]=\alpha^{\beta} b,-1 \leqslant \beta \leqslant 2$ and $\beta=0$ or 2 is disposed of by taking c, a, y, x again for a, b, x, y in 1.1 (i). If $\beta=-1$, routine checking shows that $x z c y$ cannot be reordered (with $z=x y$ still). And if $\beta=1$, replace c by $c a$ again and apply the case $\beta=-1$.

Finally suppose that $[a, x]=a^{2}$. Replacing y by $x y$ if necessary, we may assume that $a^{y}=a$. If $[c, y] \notin\langle a\rangle$, then we can argue as above with x and y interchanged. On the other hand, if $[c, y] \in\langle a\rangle$, then replacing x by $x y$ if necessary, we may assume $b^{y}=b$ and another routine check shows that, with c, a, x, y for a, b, x, y in 1.1 (i), $G \notin P_{4}$.
(c) Suppose that $\exp X^{\prime} \leqslant 2$. It is easy to see that $\exp [C, X]=4$ and so we may assume that $[c, x]=a$ (say) has order 4 for some $c \in C$. Then $[x, y c$] has order 4 and replacing y by $y c$, cases (a) and (b) apply.
(ii) Here $G / C \cong C_{4}$ and $G=C X, X=\langle x\rangle$. It is easy to see that there is an element $c \in C$ such that $[c, x]=a$ (say) has order 4. (In fact
$[C, X]=G^{\prime}$.) Then $G^{\prime}=\langle a\rangle \times\langle b\rangle$ with $|b|=2$ and, replacing c by $c a$ if necessary, we have $a^{x}=a b, b^{x}=a^{2} b$. Taking c, b, x, x^{2} for a, b, x, y in 1.1 (i) shows that $G \notin P_{4}$.

Now we begin the analysis of the final case, where $G / C \cong C_{2}$.
3.1.3. Let $G \in P_{4}, G^{\prime} \cong C_{4} \times C_{2}, C=C_{G}\left(G^{\prime}\right)$ and $|G / C|=2$. Then either
(i) G has an abelian subgroup of index 2, or
(ii) $C^{\prime}=\mho_{1}\left(G^{\prime}\right)$, all subgroups of G^{\prime} are normal in G and $G / Z(G)$ is 2-generator.

Proof. Suppose C is not abelian (otherwise (i) is true). Since $C^{\prime} \leqslant$ $\leqslant Z(G), C^{\prime} \neq G^{\prime}$. Thus $C^{\prime} \cong C_{4}, V_{4}$ or C_{2} and we distinguish these cases.
(a) Suppose that $C^{\prime} \cong C_{4}$. Then there are $c_{1}, c_{2} \in C$ such that [c_{1}, c_{2}] $=a$ (say) has order 4. Let $G=C X$, where $X=\langle x\rangle$ is cyclic. If $\left[c_{1}, x\right] \notin\langle a\rangle$, then with $G^{\prime}=\langle a\rangle \times\langle b\rangle(|b|=2)$, we have $\left[c_{1}, x\right]=a^{\lambda} b$, $-1 \leqslant \lambda \leqslant 2$. Since $a \in Z(G), b^{x}=a^{2} b$. Taking c_{1}, b, x, c_{2} for a, b, x, y in 1.1 (i) (and noting that $\left[c_{1}, x^{-1}\right]=a^{-\lambda+2} b$) we find $G \notin P_{4}$, a contradiction. Thus $\left[c_{1}, x\right]=a^{\lambda}(-1 \leqslant \lambda \leqslant 2)$ and similarly $\left[c_{2}, x\right]=a^{\mu}$ ($-1 \leqslant \mu \leqslant 2$).

Now there must exist $c_{3} \in C$ such that $\left[c_{3}, x\right]=a^{\nu} b(-1 \leqslant \nu \leqslant 2)$. Let $\left[c_{1}, c_{3}\right]=a^{\alpha},\left[c_{2}, c_{3}\right]=a^{\beta}(-1 \leqslant \alpha, \beta \leqslant 2)$. If $\alpha= \pm 1$, then the above argument with c_{3} for c_{2} gives $G \notin P_{4}$. Therefore $\alpha=0$ or 2 and similarly $\beta=0$ or 2 . if $\lambda=1$, take $c_{1}, c_{1}^{\nu+1} c_{2}^{\alpha} c_{3}, x, x^{2}$ for a, b, x, y in 1.1. Since $\left[c_{1}, x^{2}\right]=a^{2}$ and $c_{1}^{\nu+1} c_{2}^{\alpha} c_{3}$ commutes with c_{1} and x^{2}, we can apply 1.1 (ii) and obtain $\left[c_{1}^{\nu+1} c_{2}^{\alpha} c_{3}, x\right] \in\langle a\rangle$, a contradiction. If $\lambda=-1$, replacing c_{1} by c_{1}^{-1} and c_{2} by c_{2}^{-1}, the same argument applies. Finally if $\lambda=0$ or 2 , we obtain a contradiction by choosing $c_{1} c_{3}, c_{1}^{2}, c_{2}, x$ for a, b, x, y in 1.1 (i). Thus $C^{\prime} \not \equiv C_{4}$.
(b) Suppose that $C^{\prime} \cong V_{4}$. Again let $G=C X$, with $X=\langle x\rangle$. Then there exists $c_{1} \in C$ such that $\left[c_{1}, x\right]=a$ (say) has order 4. Suppose that $\langle a\rangle \notin G$, i.e. $a^{x} \notin\langle a\rangle$, and let $G_{1}=\left\langle c_{1}, x, G^{\prime}\right\rangle$. Then $G_{1}^{\prime}=G^{\prime}$ and $C_{1}=$ $=\left\langle c_{1}, x^{2}, G^{\prime}\right\rangle=C_{G_{1}}\left(G_{1}^{\prime}\right)$. But $C_{1}^{\prime}=\left\langle\left[c_{1}, x^{2}\right]\right\rangle \cong C_{2}$. Since $\langle a\rangle \nless G_{1}$, we shall see in (c) that $G_{1} \notin P_{4}$, a contradiction. Therefore $\langle a\rangle \triangleleft G$ and so $a^{x}=a^{-1}$, since $\Omega_{1}\left(G^{\prime}\right)=C^{\prime} \leqslant Z(G)$.

If there is an element $c_{2} \in C$ such that $\left[c_{1}, c_{2}\right]=b \notin\left\langle a^{2}\right\rangle$, then $G^{\prime}=$ $=\langle a\rangle \times\langle b\rangle$. Taking c_{1}, a, x, c_{2}, for a, b, x, y in 1.1 (i), we find $G \notin P_{4}$, a contradiction. Therefore $\left[c_{1}, C\right] \leqslant\left\langle a^{2}\right\rangle$. Now there are elements c_{2}, c_{3}
in C such that $\left[c_{2}, c_{3}\right]=b$ (say) has order 2 and $b \neq a^{2}$. So $G^{\prime}=\langle a\rangle \times$ $\times\langle b\rangle$. By the above argument, $\left[c_{2}, x\right]$ and $\left[c_{3}, x\right]$ lie in $\left\langle a^{2}, b\right\rangle$. But $\left[c_{1} c_{2}, x\right]=a\left[c_{2}, x\right]=a_{1}$ (say) has order 4 and $\left[c_{1} c_{2}, c_{3}\right]=\left[c_{1}, c_{3}\right] b$ has order 2 and does not belong to $\left\langle a^{2}\right\rangle=\left\langle a_{1}^{2}\right\rangle$. Then the above argument, with c_{1} replaced by $c_{1} c_{2}$ and c_{2} replaced by c_{3}, gives $G \notin P_{4}$, a contradiction.
(c) Suppose that $C^{\prime} \cong C_{2}$. We have to establish (ii). As before let $G=C X$ with $X=\langle x\rangle$ and let $c_{1} \in C_{1}$ such that $\left[c_{1}, x\right]=a$ (say) has order 4. Since C is not abelian, it is not difficult to see that, among such elements c_{1}, there is one with $c_{1} \notin Z(C)$. Also the subgroups of order 4 in G^{\prime} are normal in G. Moreover, $C^{\prime}=\mho_{1}\left(G^{\prime}\right)\left(=\left\langle a^{2}\right\rangle\right)$. For, if not, then $\Omega_{1}\left(G^{\prime}\right)=\mho_{1}\left(G^{\prime}\right) \times C^{\prime} \leqslant Z(G)$ and so $a^{x}=a^{-1}$. Also there exists $c_{2} \in C$ such that $\left[c_{1}, c_{2}\right]=b$ of order 2 (since $c_{1} \notin Z(C)$) and $G^{\prime}=\langle a\rangle \times\langle b\rangle$. Choosing c_{1}, a, x, c_{2} for a, b, x, y in 1.1 (i), we find $G \notin P_{4}$. Thus our claim follows.

Let $G^{\prime}=\langle a\rangle \times\langle b\rangle$. It is straightforward to show there is $c_{2} \in C$ with $\left[c_{2}, x\right]=b$ and $\left[c_{1}, c_{2}\right]=a^{2}$. Then

$$
\begin{equation*}
\text { all subgroups of } G^{\prime} \text { are normal in } G . \tag{2}
\end{equation*}
$$

For, if not, changing a if necessary, we may assume that $a^{x}=a$. But then, with $u_{1}=x, u_{2}=c_{1} c_{2}, u_{3}=c_{1}^{-1} x, u_{4}=c_{2}$, routine checking shows that $u_{1} u_{2} u_{3} u_{4}$ cannot be reordered. So (2) holds. It remains to show that $G / Z(G)$ can be generated by 2 elements. Let $C_{0}=C_{C}(x)$. Then $C=$ $=\left\langle c_{1}, c_{2}\right\rangle C_{0}$ and it suffices to show that $C_{0} \leqslant Z(G)$.

Let $d, e, f, g \in G$ and write $[d, e]=r,[d, f]=s,[d, g]=t,[e, f]=$ $=u,[e, g]=v,[f, g]=w$. Suppose that $d, f, g \in C, e \notin C, s=t=1$. Considering the 23 reorderings of defg, we find that at least one of the following holds:

$$
\begin{align*}
& w=1, u=1, \quad u v \in\left\langle a^{2}\right\rangle, \quad v=a^{2}, \tag{3}\\
& r \in\left\langle a^{2}\right\rangle, \quad r u=1, \quad r u v \in\left\langle a^{2}\right\rangle, \quad r v=a^{2} .
\end{align*}
$$

If $\left[\left\langle c_{1}, c_{2}\right\rangle, C_{0}\right] \neq 1$, then there is $c_{3} \in C_{0}$ such that
$\left[c_{1}, c_{3}\right]=a^{2}, \quad\left[c_{2}, c_{3}\right]=1 ; \quad$ or $\quad\left[c_{1}, c_{3}\right]=1$,

$$
\left[c_{2}, c_{3}\right]=a^{2} ; \quad \text { or } \quad\left[c_{1}, c_{3}\right]=\left[c_{2}, c_{3}\right]=a^{2}
$$

In each case, take (respectively) $d=c_{2} c_{3}, e=x, f=c_{1} c_{3}, g=c_{3}$; or $d=c_{1} c_{3}, e=c_{2} x, f=c_{3}, g=c_{2}$; or $d=c_{1} c_{2} c_{3}, e=x, f=c_{2}, g=c_{3}$. In each case, none of the relations (3) holds. Thus $\left[\left\langle c_{1}, c_{2}\right\rangle, C_{0}\right]=1$ and it suffices to show that C_{0} is abelian. If not, then there are elements
$c_{3}, c_{4} \in C_{0}$ such that $\left[c_{3}, c_{4}\right]=a^{2}$. Take $d=c_{2} c_{3}, e=x, f=c_{1} c_{4}, g=c_{3}$. Again none of the relations (3) holds. This contradiction completes the proof of 3.1.3.

In the opposite direction, we have
3.1.4. Let $G^{\prime} \cong C_{4} \times C_{2}, C=C_{G}\left(G^{\prime}\right),|G / C|=2, C^{\prime}=\mho_{1}\left(G^{\prime}\right)$, with all subgroups of G^{\prime} normal in G and suppose that $G / Z(G)$ is 2-generator. Then $G \in P_{4}$.

Proof. Suppose, for a contradiction, that $G \notin P_{4}$. By hypothesis there are elements $c_{1}, c_{2} \in C$ such that $C=\left\langle c_{1}, c_{2}\right\rangle Z(G)$. Let $G=$ $=C X, X=\langle x\rangle$. Then $G^{\prime}=[C, X]$ and we may assume that $\left[c_{1}, x\right]=a$ (say) has order 4. Thus $G^{\prime}=\langle a\rangle \times\langle b\rangle$ with $|b|=2$. Replacing c_{2} if necessary, we may also assume that $\left[c_{2}, x\right]=b$. Note that $\left[c_{1}, c_{2}\right]=$ $=a^{2}$.

Now there are elements $d, e, f, g \in G$ such that defg cannot be reordered. Suppose that $e \notin C$ while $d, f, g \in C$. Without loss of generality, $e=x$. Let $d=c_{1}^{\lambda} c_{2}^{\mu}, f=c_{1}^{\alpha} c_{2}^{\beta}, g=c_{1}^{\xi} c_{2}^{\eta}$ and let r, \ldots, w be the commutators as in 3.1.3 (c). Since $f g \neq g f, w=a^{2}$. But $w=a^{2(a \eta+\beta \xi)}$ and so

$$
\begin{equation*}
\alpha \eta+\beta \xi \equiv 1(2) . \tag{4}
\end{equation*}
$$

Now $r=a^{\lambda} b^{\mu}$ and since $d e \neq e d$ and $\operatorname{defg} \neq e d g f, r \notin\left\langle a^{2}\right\rangle$. Thus either $\lambda \equiv 1(2)$ or $\mu \equiv 1(2)$. Suppose that $s=1$, i.e. $\alpha \mu+\beta \lambda \equiv 0(2)$. One checks that $\lambda \equiv \alpha(2)$,

$$
\begin{equation*}
\mu \equiv \beta(2) \tag{5}
\end{equation*}
$$

and $t=a^{2}$, i.e. $\lambda \eta+\mu \xi \equiv 1(2)$. Then, since $d e f \neq f e d$ and $d e f g \neq f e g d$, $r u \notin\left\langle a^{2}\right\rangle$. But $r u=a^{\lambda-\alpha} b^{\mu+\beta}$ and this contradicts (5). Thus $s=a^{2}$. Similarly if $t=1$, we get contradictions to defg \neq gedf or gefd, and therefore

$$
\begin{equation*}
t=a^{2} . \tag{6}
\end{equation*}
$$

By (4), u, v and $u v \notin\left\langle a^{2}\right\rangle$ and so $G^{\prime}=\left\langle a^{2}, u, v\right\rangle$. But $r \notin\left\langle a^{2}\right\rangle$ and so $r u, r v$ or $r u v \in\left\langle a^{2}\right\rangle$. The first possibility is ruled out as above, the second contradicts (6), while defg \neq fged or gfed shows that $r u v \notin\left\langle a^{2}\right\rangle$.

Using the facts that $C \in P_{3}$ and that $g^{-1} f^{-1} e^{-1} d^{-1}$ cannot be reordered, there are 7 remaining cases depending on which of d, e, f, g belong to C and they are handled in the same fashion. (See[8] for details.)

Summarising the results of 3.1 , we have proved
3.1.5. Let $G^{\prime} \cong C_{4} \times C_{2}$. Then $G \in P_{4}$ if and only if $C=C_{G}\left(G^{\prime}\right)$ has index 2 in $G, C^{\prime}=\mho_{1}\left(G^{\prime}\right)$, all subgroups of G^{\prime} are normal in G and $G / Z(G)$ is 2-generator.

3.2. The case $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$.

Suppose that G is nilpotent of class $\geqslant 3$ with $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$. We show that $G \notin P_{4}$. If $C=C_{G}\left(G^{\prime}\right)$, then $G / C \cong C_{2} \times C_{2}, C_{4}$ or C_{2}. We distinguish these cases.
3.2.1. Let G be nilpotent with $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}, C=C_{G}\left(G^{\prime}\right)$ and $G / C \cong C_{2} \times C_{2}$. Then $G \notin P_{4}$.

Proof. Let $G=C X$, where $X=\langle x, y\rangle$. Then $X^{\prime} \triangleleft G$ and we consider 4 possibilities for X^{\prime}.
(i) Suppose that $X^{\prime}=G^{\prime}$. It is routine to check that there is a basis $\{a, b, c\}$ of G^{\prime} such that $a^{x}=a b, b^{x}=b, c^{x}=c, a^{y}=a c, b^{y}=b$, $c^{y}=c$ and $[x, y]=a$. But then $u_{1} u_{2} u_{3} u_{4}$ cannot be reordered, where $u_{1}=y^{2}, u_{2}=x, u_{3}=y, u_{4}=x^{2}$. Therefore $G \notin P_{4}$.
(ii) Suppose that $X^{\prime} \cong C_{2} \times C_{2}$. We can take $X^{\prime}=\langle b, c\rangle,[x, y]=$ $=b, b^{x}=b c, b^{y}=b, c^{x}=c, c^{y}=c$. Clearly $G^{\prime}=C^{\prime}[C, X] X^{\prime}$ and since $C^{\prime} \leqslant Z(G)$, we have $C=C_{G}\left([C, X] X^{\prime}\right)$. Thus, by hypothesis, $[C, X] X^{\prime}=G^{\prime}$ and so there is an element $c_{1} \in C$ such that either $\left[c_{1}, x\right] \notin X^{\prime}$ or $\left[c_{1}, y\right] \notin X^{\prime}$. If $\left[c_{1}, x\right] \in X^{\prime}$, then $\left[c_{1}, y\right]=a \notin X^{\prime}$ and we can show that $G^{\prime}=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$ with $a^{x}=a, \quad a^{y}=a c$, $1 \not \equiv\left[c_{1}, x\right] \equiv\left[c_{1}, y\right] \not \equiv 1 \bmod \langle c\rangle$. Then the hypotheses of 1.1 (i) are satisfied with c_{1}, a, y, x for a, b, x, y. Since $[a, y]=c$, it follows that $G \notin P_{4}$.

Suitable substitutions for x and y reduce the second possibility ($\left[c_{1}, x\right] \notin X^{\prime}$) to the case just handled.
(iii) Suppose that $X^{\prime} \cong C_{2}$. Let $[x, y]=c$. Thus $1 \neq c \in Z(G)$. Now $C^{\prime} X^{\prime} \leqslant Z(G)$, and so $G^{\prime}=[C, X]$. Therefore we may assume that there is an element $c_{1} \in C$ such that $\left[c_{1}, x\right]=b \notin\langle c\rangle$. Then $\left[x, c_{1} y\right]=$ $=b^{y} c \notin\langle c\rangle$. But by cases (i) and (ii) we may assume that $\left\langle x, c_{1} y\right\rangle^{\prime}$ has order 2 and so $b^{y} c \in Z(G)$, i.e. $b \in Z(G)$. Therefore $\left|Z(G) \cap G^{\prime}\right|=4$. Choose $c_{2} \in X$ and $\varepsilon=0$ or 1 such that

$$
\left[c_{2}, x y^{\varepsilon}\right]=a \notin Z(G) .
$$

Then

$$
\left[x y^{\varepsilon}, c_{2} y\right]=\left[x y^{\varepsilon}, y\right]\left[x y^{\varepsilon}, c_{2}\right]^{y}=c a^{y} \notin Z(G)
$$

Therefore $\left|\left\langle x y^{\varepsilon}, c_{2} y\right\rangle^{\prime}\right| \geqslant 4$ and $G \notin P_{4}$ by cases (i) and (ii).
(iv) Finally suppose that X is abelian. Again $G=[C, X]$ and so there is an element $c_{1} \in C$ such that, without loss of generality, $\left[c_{1}, x\right]=c \neq 1$. Then $\left[x, c_{1} y\right]=c^{y} \neq 1$ and $\left\langle x, c_{1} y\right\rangle$ is not abelian. Thus $G \notin P_{4}$ by the previous cases.

The next case is much easier.
3.2.2. Let G be nilpotent with $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}, C=C_{G}\left(G^{\prime}\right)$ and $G / C \cong C_{4}$. Then $G \notin P_{4}$.

Proof. Let $G=C X$ with $X=\langle x\rangle$. Then $G^{\prime}=C^{\prime}[C, X]$ and since $C^{\prime} \leqslant Z(G)$, it follows that $G^{\prime}=[C, X]$. One sees easily that G^{\prime} is indecomposable as an X-module. Choose a basis $\{a, b, c\}$ of G^{\prime} such that $[a, x]=b,[b, x]=c,[c, x]=1$. Also choose $c_{1} \in C$ such that $\left[c_{1}, x\right]=$ $=a b^{\lambda} c^{\mu}, 0 \leqslant \lambda, \mu \leqslant 1$. Then $\left[a^{\lambda} b^{\mu} c_{1}, x\right]=a$ and replacing c_{1} by $a^{\lambda} b^{\mu} c_{1}$ we may assume that $\left[c_{1}, x\right]=a$. Taking c_{1}, b, x, x^{2} for a, b, x, y in 1.1 (i) we find $G \notin P_{4}$.

The final case is
3.2.3. Let G be nilpotent with $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}, C=C_{G}\left(G^{\prime}\right)$ and $|G / C|=2$. Then $G \notin P_{4}$.

Proof. There is a basis $\{a, b, c\}$ of G^{\prime} such that $a^{x}=a b, b^{x}=b$, $c^{x}=c$. Also $G^{\prime}=C^{\prime}[C, X]$ and $C^{\prime} \leqslant\langle b, c\rangle$ since $C^{\prime} \leqslant Z(G)$. We may assume that if $c_{1} \in C$ and $\left[c_{1}, x\right] \notin\langle b, c\rangle$, then $\left[c_{1}, C\right] \leqslant\langle b\rangle$. For, if not, then there exists $c_{2} \in C$ such that $\left[c_{1}, c_{2}\right] \notin\langle b\rangle$. Then taking c_{1}, a, x, c_{2} for a, b, x, y in 1.1 (i) we see that $G \notin P_{4}$. Now it is not hard to see that $[C, X] \nexists\langle a, b\rangle$ and we can find $c_{1}, c_{3} \in C$ such that $\left[c_{1}, x\right]=a b^{\alpha} c^{\gamma}$, $\left[c_{3}, x\right]=b^{\mu} c$ and $\left[c_{1}, c_{3}\right]=1$. Taking c_{1}, c_{3}, x, x^{2} for a, b, x, y in 1.1 (i) shows that $G \notin P_{4}$.

Summarising the previous 3 results, we have
3.2.4. Let G be nilpotent of class $\geqslant 3$ with $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$. Then $G \notin P_{4}$.

3.3. The case $G^{\prime} \cong C_{8}$.

Finally for groups G with $\left|G^{\prime}\right|=8$ we have
3.3.1. Let $G^{\prime} \cong C_{8}$ and suppose that G does not have an abelian subgroup of index 2. Then $G \notin P_{4}$.

Proof. Suppose that G has class 2. Using 2.1, we may assume that G is a finite 2 -group. But then $G \notin P_{4}$, by 1.2.

Now suppose that class $G \geqslant 3$. Let $C=C_{G}\left(G^{\prime}\right)$. Then G / C is either the 4 -group or of order 2 and we distinguish these cases.

Case (i). Suppose that $G / C \cong C_{2} \times C_{2}$. Let $G=C X$, where $X=$ $=\langle x, y\rangle$. Thus $G^{\prime}=C^{\prime}[C, X] X^{\prime}$ and since $C^{\prime} \leqslant Z(G), C^{\prime}<G^{\prime}$ and we have $G^{\prime}=[C, X] X^{\prime}$. Let $G^{\prime}=\langle a\rangle$. If $X^{\prime} \leqslant\left\langle a^{2}\right\rangle$, then there are elements $c \in C, z \in X \backslash C$ such that $[c, z]=a$. Choose $t \in X$ such that $G=C\langle z, t\rangle$. Then $[c t, z]=a^{t} a^{2 i}$ (some integer i) and so $[c t, z] \notin\left\langle a^{2}\right\rangle$. Therefore replacing X by $\langle c t, z\rangle$, we may assume that $X^{\prime}=G^{\prime}=\langle a\rangle$. Thus, without loss of generality, $[x, y]=a, a^{x}=a^{-1}, a^{y}=a^{3}$. Let $z=x y$. Then it is routine to check that $x a y z$ cannot be reordered and so $G \notin P_{4}$.

Case (ii). Suppose that $|G / C|=2$. Now $G=C X$ with $X=\langle x\rangle$ and $G^{\prime}=[C, X]$. So there is an element $c \in C$ such that $[c, x]=a$ (say) generates G^{\prime}. If $a^{x}=a^{2 i+1}\left(i=1\right.$ or 2), then $[a, x]=a^{2 i}$ and $\left[c, x^{2}\right]=$ $=a^{2(i+1)}$. Take c, a, x, x^{2} for a, b, x, y in 1.1. If $i=1$, then $\left[c, x^{2}\right]=a^{4}$ and 1.1 (ii) fails; while if $i=2$, then $[a, x]=a^{4}$ and 1.1 (i) fails. Thus $G \notin P_{4}$.

Therefore we may suppose that $a^{x}=a^{-1}$. Since $C^{\prime} \leqslant Z(G), C^{\prime} \leqslant$ $\leqslant\left\langle a^{4}\right\rangle$. By hypothesis $C^{\prime} \neq 1$ and so $C^{\prime}=\left\langle a^{4}\right\rangle$. Then there are elements $c_{1}, c_{2} \in C$ such that

$$
\begin{equation*}
\left[c_{1}, c_{2}\right]=a^{4}, \quad\left\langle\left[c_{1}, x\right]\right\rangle=G^{\prime}=\langle a\rangle \tag{7}
\end{equation*}
$$

For, certainly there are elements $c_{1}, c_{2} \in C$ such that $\left[c_{1}, c_{2}\right]=a^{4}$. Thus suppose that $\left[c_{1}, x\right] \in\left\langle a^{2}\right\rangle$. If $\left[c_{1} c, c_{2}\right]=1$, then $\left[c, c_{2}\right]=a^{4}$ and we can take $c_{1}=c$. On the other hand, if $\left[c_{1} c, c_{2}\right]=a^{4}$, then since $\left[c_{1} c, x\right] \notin\left\langle a^{2}\right\rangle$, we can take $c_{1} c$ for c_{1}. Therefore we have (7) and so we may assume that $\left[c_{1}, x\right]=a$. Then $\left[c_{1}, x^{-1}\right]=a$. Take c_{1}, a, x, c_{2} for a, b, x, y in 1.1 (ii). We find that $G \notin P_{4}$.

4. Derived subgroups of order exceeding 8.

We shall prove that if $G \in P_{4}$ and G does not have an abelian subgroup of index 2 , then $\left|G^{\prime}\right| \leqslant 8$. Finite groups are considered in 4.2
and infinite groups in 4.3. In the finite case we argue by induction on order and in anticipation of this we derive some technical results in 4.1.

4.1. Groups with a metabelian subgroup of index 2 .

Throughout this subsection we assume that

$$
\begin{aligned}
& G \notin P_{4}, G \text { does not have an abelian subgroup of index } 2 \text {, } \\
& N \triangleleft G, N \leqslant G^{\prime}, G / N \text { has an abelian subgroup } B / N \text { of index } 2 \text { and } \\
& G=\langle B, h\rangle \text {. }
\end{aligned}
$$

By rank we always understand Prüfer rank.

4.1.1. G^{\prime} / N has rank $\leqslant 2$.

Proof. Suppose, for a contradiction, that rank $G^{\prime} / N \geqslant 3$. Clearly we may assume that $B^{\prime}=N$ and it is not difficult to show that there are elements $w, x, y \in B$ such that

$$
[w, x] \neq 1,[w, h]=q \notin N,[x, h]=r \notin\langle q, N\rangle,[y, h]=s \notin\langle q, r, N\rangle .
$$

Then we claim that wxhy cannot be reordered. For, wxhy $=$ wxyhs ${ }^{-1}$ and modulo N every reordering of wxhy is uniquely expressible as

$$
\begin{equation*}
w x y h q^{\alpha} r^{\beta} s^{\gamma} \tag{8}
\end{equation*}
$$

with $\alpha, \beta, \gamma \in\{0,-1\}$. Let $\lambda=\alpha+\beta+\gamma$ and $a=q^{\alpha} r^{\beta} s^{\gamma}$. Thus with \ldots representing factors in a reordering (8) of wxhy, $h \ldots$ has $\lambda=-3$, . h.. has $\lambda=-2$ and...h had $\lambda=0$. Also..$h w$ has $a=q^{-1}, . . h x$ has $a=r^{-1}$ and $x w h y \neq w x h y$. Thus our claim follows, contradicting $G \in P_{4}$.

Next we consider some cases when G^{\prime} has rank 2.
4.1.2. Let $G^{\prime}=\langle a\rangle \times\langle b\rangle$ with $|a|=2^{m},|b|=2^{n}, m \geqslant n$, and let $N=\Omega_{1}\langle a\rangle(\triangleleft G)$. Then $m \leqslant 2$.

Proof. Suppose, for a contradiction, that $m \geqslant 3$. Since B is not abelian, $B^{\prime}=N$. Then $G^{\prime}=N[B, h]=[B, h]$. Again it is not difficult to find elements $x, y \in B$ such that

$$
[x, y] \neq 1, \quad[x, h] \notin\left\langle a^{2}, b\right\rangle, \quad[y, h] \in\left\langle a^{2}, b\right\rangle .
$$

Thus $[x, h]=a^{i} b^{j}(i$ odd $)$ and $\left[x^{2}, h\right] \equiv a^{2 i} b^{2 j} \bmod N$. Let $z=x^{2}$. Then $[y, z]=1$ and $y x h z \equiv x^{3} y h a^{-2 i} b^{-2 j} \bmod N$. By considering the position of h in reorderings of $y x h z$ (as in 4.1.1 and again working modulo N
when convenient), we find that yxhz cannot be reordered, contradicting $G \in P_{4}$.

4.1.3. If $|N|=2$, then $G^{\prime} \not \equiv C_{4} \times C_{4}$.

Proof. Suppose, for a contradiction, that $G^{\prime} \cong C_{4} \times C_{4}$ and let $G^{\prime}=\langle a\rangle \times\langle b\rangle$ with $N=\left\langle a^{2}\right\rangle$. Then $B^{\prime}=N$ and $G^{\prime}=[B, h]$. As in 4.1.2 there are elements $x, y \in B$ such that $[x, y]=a^{2},[x, h]=a b^{j}$ (replacing a by a^{-1} if necessary). We may assume that $j=0$ or 1 . In the former case, we may assume (replacing y by a suitable element if necessary) that $[y, h]=b$. Thus $\left[y^{2}, h\right] \equiv b^{2} \bmod N$. Put $z=y^{2}$. Then easy checking shows $x y h z$ cannot be reordered. In the second case, when $[x, h]=a b$, we may assume that $[y, h] \notin\left\langle a^{2}, b\right\rangle$. Thus $[y, h]=a^{i} b^{k}$ where either (i) i is odd and k is even or (ii) i is even and k is odd. If (i) holds, then the previous case applies with x and y interchanged. Thus (ii) holds. Replacing a by a^{-1} and b by $a^{2} b$ gives $[y, h]=b^{ \pm 1}$. Then the previous case applies with $x y$ and x for x and y.

4.2. Bounding $\left|G^{\prime}\right|:$ the finite case.

Suppose that $G \in P_{4}$ and G does not have an abelian subgroup of index 2. If $\left|G^{\prime}\right|>5$, then G is nilpotent, by Theorem 3. Thus if G is finite, then $G=A \times B$ with A a 2 -group and $|B|$ odd. If $B^{\prime} \neq 1$, then 1.3 shows that A is abelian; and $\left|B^{\prime}\right|=3$ or 5 , by Theorem 2 . Thus B must be abelian and in order to prove that $\left|G^{\prime}\right| \leqslant 8$, we may assume that G is a 2 -group.
4.2.1 Let G be a finite group in P_{4}. Then either G has an abelian subgroup of index 2 or $\left|G^{\prime}\right| \leqslant 8$.

Proof. Suppose that G does not have an abelian subgroup of index 2. Thus we may assume that G is a 2 -group (see above).

Assume, for a contradiction, that $\left|G^{\prime}\right| \geqslant 16$ and let $\exp G^{\prime}=2^{e}$. Choose $N \triangleleft G,|N|=2$ and with $N \leqslant \mho_{e-1}\left(G^{\prime}\right)$. Then

G / N does not have an abelian subgroup of index 2.

For, suppose that this is not the case. Then, by 4.1.1, $\operatorname{rank} G^{\prime} / N \leqslant 2$ and therefore $\operatorname{rank} G^{\prime} \leqslant 3$. If $\operatorname{rank} G^{\prime}=3$, then $e \geqslant 2$ and since $N \leqslant$ $\leqslant \Phi\left(G^{\prime}\right), \operatorname{rank} G^{\prime} / N=3$. Thus rank $G^{\prime} \leqslant 2$ and so, by 4.1.2, $e \leqslant 2$. Since $\left|G^{\prime}\right| \geqslant 16$, we would have $G^{\prime} \cong C_{4} \times C_{4}$, contradicting 4.1.3. Then (9) follows.

By induction on $|G|$, we may assume that $\left|G^{\prime} / N\right|=8$ and so $\left|G^{\prime}\right|=16$. We distinguish the cases in which G^{\prime} is isomorphic to
$C_{8} \times C_{2}, C_{4} \times C_{4}$ and $G^{\prime} / N \cong C_{2} \times C_{2} \times C_{2}$. (Recall that $G^{\prime} \neq C_{16}$, otherwise $G^{\prime} / N \cong C_{8}$, contradicting 3.3.1.)

Case (i). Suppose that $G^{\prime} \cong\langle a\rangle \times\langle b\rangle,|a|=8,|b|=2$. Here $N=$ $=\left\langle a^{4}\right\rangle$ and $G^{\prime} / N \cong C_{4} \times C_{2}$. Let $C=C_{G}\left(G^{\prime} / N\right)$ By 3.1.3

$$
\begin{equation*}
|G: C|=2, \quad(C / N)^{\prime}=C^{\prime} N / N=\left\langle a^{2}\right\rangle / N \tag{10}
\end{equation*}
$$

$$
\text { and } \quad N \leqslant X \leqslant G^{\prime} \quad \text { implies } \quad X \triangleleft G .
$$

Therefore $C^{\prime}=\left\langle a^{2}\right\rangle$. Let $G=\langle C, h\rangle$. Thus $G^{\prime}=C^{\prime}[C, h]=[C, h]$ since $a^{2} \in \Phi\left(G^{\prime}\right)$. Also $[a, C] \leqslant N$ and therefore $\left[a^{2}, C\right]=1$. Then we easily find elements $x, y \in C$ such that $[x, y]=a^{4}$ and $|[x, h]|=8$. Now $[b, h] \in N$ and $h \notin C$. Therefore $[a, h] \notin N$ and so

$$
\begin{equation*}
[a, h]=a^{ \pm 2} \tag{11}
\end{equation*}
$$

Let $H=\left\langle x, y, h, G^{\prime}\right\rangle, K=\left\langle x, y, h^{2}, G^{\prime}\right\rangle$. Thein either $H^{\prime}=G^{\prime}$ or $H^{\prime} \cong C_{8}$. Also $N \leqslant K^{\prime}$ and $K \leqslant C$. Thus $|H: K|=2$ and $K=C \cap H$. Let $C^{*}=C_{H}\left(H^{\prime} / N\right)$. Then $K \leqslant C^{*}$ and so $C^{*}=K$, since $h \notin C^{*}$ (by (11)). But K is not abelian and therefore H does not have an abelian subgroup of index 2. However, by (10) and (11), $\left[C, h^{2}\right] \leqslant N$ and thus K / N is abelian. Then H / N has an abelian subgroup of index 2 , contradicting 4.1.2.

Case (ii). Now suppose that $G^{\prime}=\langle a\rangle \times\langle b\rangle,|a|=|b|=4$. We can take $N=\left\langle a^{2}\right\rangle$. As in (i), $C=C_{G}\left(G^{\prime} / N\right)$ has index 2 in G and $(C / N)^{\prime}=$ $=\left\langle b^{2}\right\rangle N / N$, i.e. $C^{\prime} \leqslant\left\langle a^{2}, b^{2}\right\rangle$. All subgroups of G^{\prime} / N are normal in G / N and so $\langle a\rangle \triangleleft G$. By assumption, $C^{\prime} \neq 1$. Also $\left|C^{\prime}\right| \neq 2$ (by 4.1.3). Thus $C^{\prime}=\left\langle a^{2}, b^{2}\right\rangle=\Phi\left(G^{\prime}\right)$. Then with $G=\langle C, h\rangle$, we have $G^{\prime}=[C, h]$. Since $\langle a\rangle \triangleleft G,[b, h] \notin N$. Also $\langle b, N\rangle \triangleleft G$ and so $\left\langle b^{2}\right\rangle \triangleleft G$, i.e. $C^{\prime} \leqslant Z(G)$. By 4.1.3, $G /\left\langle b^{2}\right\rangle$ cannot have an abelian subgroup of index 2 and thus, by 3.1.3, $\langle b\rangle \triangleleft G$. Similarly $\langle a b\rangle \triangleleft G$. Therefore, by conjugation, h inverts a and b and thus every element outside C does the same. Hence $C=C_{G}\left(G^{\prime}\right)$.

In a routine way we find elements $x, y \in C$ such that (replacing a and b by suitable elements if necessary) $[x, y] \neq 1,[x, h]=a,[y, h]=$ $=b$. Let $H=\left\langle x, y, h, G^{\prime}\right\rangle, K=\left\langle x, y, h^{2}, G^{\prime}\right\rangle$. So $H^{\prime}=G^{\prime}$ and clearly $|H / K|=2$. Since $\left[C, h^{2}\right]=1, K /\langle[x, y]\rangle$ is abelian and hence $H /\langle[x, y]\rangle$ has an abelian subgroup of index 2. If H has an abelian subgroup A of index 2 , then $H^{\prime} \leqslant A \leqslant C_{H}\left(G^{\prime}\right)=K$ and so $A=K$, contradicting $K^{\prime} \neq 1$. Thus H does not have an abelian subgroup of index 2 , contradicting 4.1.3.

For the remaining case, we need the following two results.
4.2.2. Let $G=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ be nilpotent of class 2 with G^{\prime} of exponent 2. Suppose that there is an element $\sigma \in \Sigma_{3}, \sigma \neq 1$, such that $x_{1} x_{2} x_{3}=x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)}$. Then $\left|G^{\prime}\right| \leqslant 4$.

The proof can safely be left as an easy exercise.
4.2.3. Let $G \in P_{4}$ and $N \leqslant Z(G)$ with G / N nilpotent of class 2. Let $x_{1}, x_{2}, x_{3} \in G$ with the property that the only element $\sigma \in \Sigma_{3}$ such that $x_{1} x_{2} x_{3} \equiv x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} \bmod N$ is $\sigma=1$. Then for all $a \in G^{\prime},\left[a, x_{1}\right]=1$ if and only if $\left[a, x_{3}\right]=1$.

Again the proof is an exercise-assume $\left[a, x_{1}\right]=1$ and consider a reordering of $x_{1} x_{2} x_{3} a$.

Proof of 4.2.1 CONTINUED. Case (iii). Finally suppose that $G^{\prime} / N \cong C_{2} \times C_{2} \times C_{2}$. Let bars denote subgroups and elements of G modulo N. By 3.2.4, \bar{G} has class 2 and by Theorem 4 either (a) $\bar{G} / Z(\bar{G})$ is 3-generator or (b) $\bar{G} / Z(\bar{G})$ is 4-generator and \bar{G} is not diabelian.

Consider case (a) where $\bar{G}=\left\langle Z(\bar{G}), \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$. Then $\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle^{\prime}$ is elementary of rank 3 . Let $a \in G^{\prime}$. Since $\left|G: C_{G}\langle a, N\rangle\right| \leqslant 2$, we may assume that $\left[a, x_{1}\right]=1$. By 4.2.2, neither $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ nor $\bar{x}_{2} \bar{x}_{1} \bar{x}_{3}$ can be reordered. Therefore, by 4.2.3, $\left[a, x_{3}\right]=1$ and hence $\left[a, x_{2}\right]=1$. Let $\bar{c} \in Z(\bar{C})$ Replacing \bar{x}_{2} in the above argument by $\overline{c x}_{2}$, we obtain similarly $\left[a, c x_{2}\right]=1$, i.e. $[a, c]=1$. Thus $a \in Z(G)$ and therefore $G^{\prime} \leqslant Z(G)$. But this contradicts Theorem 4.

Now suppose that case (b) holds. By 3.2.6 of [7], $\bar{G}=\langle\bar{A}, \bar{x}, \bar{y}\rangle$ with $\bar{A} \triangleleft \bar{G}, \bar{A}$ abelian; and \bar{G} is not diabelian. By choosing \bar{A} as large as possible, we may assume that $N \leqslant A$ and so $G=\langle A, x, y\rangle$. Again we claim that class $G=2$. For, let $a \in G^{\prime}$. As before, we may assume that $[a, x]=1$. Since \bar{G} / \bar{A} is elementary, it follows from (9) that $\bar{G} / \bar{A} \cong C_{2} \times$ $\times C_{2}$ and $[\bar{A}, \bar{x} \bar{y}] \neq 1$. Thus we can find $c \in A$ such that $[\bar{c}, \bar{x} \bar{y}] \neq 1$. Let $z=$ $=c x$. Since \bar{G} is not diabelian, it follows easily that $\overline{x y z}$ cannot be reordered. Therefore, by 4.2.3, $[a, z]=1$ and so $[a, c]=1$. Since \bar{A} is generated by such elements \bar{c}, it follows that $[a, A]=1$. Also $[\bar{A}, \bar{x}] \neq 1 \neq[\bar{A}, \bar{y} \bar{x}]$ and therefore $\bar{A} \neq C_{\bar{A}}(\bar{x}) \cup C_{\bar{A}}(\bar{y} \bar{x})$. Thus there is an element $d \in A$ such that $[\bar{d}, \bar{x}] \neq 1 \neq[\bar{d}, \bar{y} \bar{x}]$. As before, it follows easily that $\bar{y} \bar{x} \bar{d}$ cannot be reordered. (If $\bar{y} \bar{x} \bar{d}=\bar{d} \bar{x} \bar{y}$, then $[\bar{d} \bar{x}, \bar{y} \bar{x}]=1$ and $\bar{G}=\bar{A}\langle\bar{d} \bar{x}, \bar{y} \bar{x}\rangle$ would be diabelian.) Since $[a, d]=1,4.2 .3$ gives [$a, y]=1$. Thus $a \in Z(G)$ and so $G^{\prime} \leqslant Z(G)$, as claimed. As in case (a), this contradicts Theorem 4.

4.3. Bounding $\left|G^{\prime}\right|$: the general case.

First, a straightforward inverse limit argument (see, for example [5], vol. 2, p. 167) gives
4.3.1. Suppose that every finitely generated subgroup of G is abelian or has an abelian subgroup of index 2. Their either G is abelian or G has an abelian subgroup of index 2.

Now we can establish
4.3.2. Let $G \in P_{4}$. Then either G has an abelian subgroup of index 2 or $\left|G^{\prime}\right| \leqslant 8$.

Proof. As we saw at the beginning of 4.2 , we may assume that G is nilpotent.
(i) Suppose that G is finitely generated. Then G^{\prime} is finitely generated and has finite exponent ([3], 2.2). Thus G^{\prime} is finite. Also G is residually finite and so there is $N \triangleleft G$ with G / N finite and $G^{\prime} \cap N=1$. If G / N has an abelian subgroup A / N of index 2 , then A is abelian and has index 2 in G. On the other hand, if G / N does not have an abelian subgroup of index 2 , then $\left|G^{\prime}\right|=\left|(G / N)^{\prime}\right| \leqslant 8$, by 4.2.1.
(ii) Now suppose that G is arbitrary. Suppose that G is not abelian and does not have an abelian subgroup of index 2. By 4.3.1, there is a finitely generated subgroup X of G with the same properties. If $\left|G^{\prime}\right|>8$, then, by enlarging X if necessary, we may assume that $\left|X^{\prime}\right|>8$. But this would contradict (i). Thus $\left|G^{\prime}\right| \leqslant 8$.

5. Nilpotent P_{4}-groups.

The classification of the nilpotent P_{4}-groups is as follows.
5.1. Let G be a nilpotent group. Then $G \in P_{4}$ if and only if one of the following holds:
(i) G has an abelian subgroup of index 2;
(ii) $\left|G^{\prime}\right| \leqslant 3$;
(iii) $G^{\prime} \cong V_{4}$;
(iv) $G^{\prime} \cong C_{4}$ and G has a subgroup B of index 2 with $\left|B^{\prime}\right|=2$;
(v) $G^{\prime} \cong C_{5}$ and $|G / Z(G)|=25$;
(vi) $G^{\prime} \cong C_{4} \times C_{2}$ and, with $C=C_{G}\left(G^{\prime}\right),|G / C|=2, C^{\prime}=\mho_{1}\left(G^{\prime}\right)$, all subgroups of G^{\prime} are normal in G and $G / Z(G)$ is 2-generator;
(vii) $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}, G$ has class 2 and either $G / Z(G)$ is 3-generator or $G / Z(G)$ is 4-generator and G is not diabelian.

Proof. Let $G \in P_{4}$ and suppose that (i) does not hold. By 4.3.2, $\left|G^{\prime}\right| \leqslant 8$. Routine arguments allow us to assume that G is finitely generated. Then, as in 4.3.2 (i), there is a finite quotient G / N with $(G / N)^{\prime} \cong G^{\prime}$. Therefore, by 1.3 and Theorem 2 , either $\left|G^{\prime}\right| \leqslant 5$ or $\left|G^{\prime}\right|=8$. If $\left|G^{\prime}\right| \leqslant 4$, then G satisfies (ii), (iii) or (iv) (by 2.4). Suppose that $\left|G^{\prime}\right|=8$. By 3.3.1, $G^{\prime} \neq C_{8}$; and if $G^{\prime} \cong C_{4} \times C_{2}$, then G satisfies (vi), by 3.1.3. Thus we may assume that $G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$. By 3.2.4, class $G=2$ and so $G / Z(G)$ is a finite elementary abelian 2-group. Let $L=Z(G) \cap N$. Then G / L is finite and $Z(G / L)=Z(G) / L$. By Theorem $4, G / L$ modulo its centre has rank $\leqslant 4$ and hence $\operatorname{rank} G / Z(G) \leqslant 4$. Also if $\operatorname{rank} G / Z(G)=4$ and G is diabelian, then G / L has structure contradicting Theorem 4. Thus G satisfies (vii). Finally, if $\left|G^{\prime}\right|=5$, then, by Theorem $2, G / Z(G) \cap N$ has order 25 modulo its centre, namely $Z(G) / Z(G) \cap N$. Thus $|G / Z(G)|=25$ and (v) holds.

Conversely, if G satisfies (i), then $G \in P_{4}$, by Theorem 3. If $\left|G^{\prime}\right|=$ $=2$, then $G \in P_{3}$, by [2]. Suppose that $\left|G^{\prime}\right|=3$. To show that $G \in P_{4}$, we may assume that G is finitely generated and, by 2.1 , even finite and hence a 3 -group. Then $G \in P_{4}$, by Theorem 2. If (iii) holds, then $G \in P_{4}$, by Theorem 1. If G satisfies (iv), then $G \in P_{4}$, by 2.4.

Suppose that (v) holds. To show that $G \in P_{4}$, again we may assume that G is finite and hence a 5 -group and the result follows from Theorem 2. If (vi) holds, 3.1.4 shows that $G \in P_{4}$. Finally, suppose that G satisfies (vii). We may assume that G is finitely generated and so $Z(G)$ is finitely generated. If B is a complement in $Z(G)$ of the 2-component of $Z(G)$, then it suffices to show that $G / B \in P_{4}$, since G embeds in $G / B \times G / G^{\prime}$. But G / B is a finite 2 -group and satisfies (vii) and so $G / B \in P_{4}$, by Theorem 4.

Taking Theorem 3 and 5.1 together, we have a complete description of P_{4}-groups and their structure is as described in Theorem 5 of $\S 1$.

REFERENCES

[1] M. Bianchi - R. Brandl - A. Gillio Berta Mauri, On the 4-permutational property, Arch. Math., 48 (1987), pp. 281-285.
[2] M. Curzio - P. Longobardi - M. Maj, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sci. Mat. Fis. Nat., 74 (1983), pp. 136-142.
[3] M. Curzio - P. Longobardi - M. Maj - D. J. S. Robinson, On a permutational property of groups, Arch. Math., 44 (1985), pp. 385-389.
[4] G. Higman, Rewriting products of group elements, Lectures given in Urbana in 1985 (unpublished).
[5] A. G. Kurosh, The Theory of Groups, 2nd edition (2 vols.), Chelsea, New York (1960).
[6] P. Longobardi - M. Maj, On groups in which every product of four elements can be reordered, Arch. Math., 49 (1987), pp. 273-276.
[7] P. Longobardi - S. Stonehewer, Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois J., 35 (1991), pp. 198-219.
[8] P. Longobardi - M. Maj - S. Stonehewer, The classification of groups in which every product of four elements can be reordered, preprint, Warwick University.
[9] M. MAJ - S. Stonehewer, Non-nilpotent groups in which every product of four elements can be reordered, Canadian J., 42 (1990), pp. 1053-1066.

Manoscritto pervenuto in redazione il 30 giugno 1993.

