@article{RSMUP_1992__88__151_0, author = {Amar, Micol and De Cicco, Virginia}, title = {The uniqueness as a generic property for some one-dimensional segmentation problems}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {151--173}, publisher = {Seminario Matematico of the University of Padua}, volume = {88}, year = {1992}, mrnumber = {1209122}, zbl = {0783.49014}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1992__88__151_0/} }
TY - JOUR AU - Amar, Micol AU - De Cicco, Virginia TI - The uniqueness as a generic property for some one-dimensional segmentation problems JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1992 SP - 151 EP - 173 VL - 88 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1992__88__151_0/ LA - en ID - RSMUP_1992__88__151_0 ER -
%0 Journal Article %A Amar, Micol %A De Cicco, Virginia %T The uniqueness as a generic property for some one-dimensional segmentation problems %J Rendiconti del Seminario Matematico della Università di Padova %D 1992 %P 151-173 %V 88 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1992__88__151_0/ %G en %F RSMUP_1992__88__151_0
Amar, Micol; De Cicco, Virginia. The uniqueness as a generic property for some one-dimensional segmentation problems. Rendiconti del Seminario Matematico della Università di Padova, Tome 88 (1992), pp. 151-173. http://www.numdam.org/item/RSMUP_1992__88__151_0/
[1] A compactness theorem for a special class of functions of bounded variation, Bull. Un. Mat. It., 3-B (1989), pp. 857-881. | MR | Zbl
,[2] Variational problems in SBV, Acta Applicandae Mathematicae, 17 (1989), pp. 1-40. | MR | Zbl
,[3] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, to appear on Comm. Pure Appl. Math. | Zbl
- ,[4] Uniqueness of the one-dimensional bounce problem as a generic property in L1([0, T]; R), Boll. Un. Mat. It. (6), 1-A (1982), pp. 87-91. | MR | Zbl
- ,[5] On the existence of solutions to a problem in image segmentation, to appear.
- ,[6] A variational method in image segmentation: existence and approximation results, to appear on Acta Mathematica. | MR | Zbl
- - ,[7] Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal., (3), 108 (1989), pp. 195-218. | MR | Zbl
- - ,[8] J. A. YORKE, The generic property of existence of solutions of differential equations in Banach spaces, J. Diff. Eq., 13 (1973), pp. 1-12. | MR | Zbl
-[9] S. SOLIMINI, Segmentation of images by variational methods: a constructive approach, Revista Matem. de la Univ. Complutense de Madrid, 1 (1988), pp. 169-182. | MR | Zbl
-[10] Segmentation d'images par méthode variationelle: une preuve constructive d'existence, C.R. Acad. Sci. Paris, 308, Série I (1989), pp. 465-470. | MR | Zbl
- ,[11] J. SHAH, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577-685. | MR | Zbl
-[12] Boundary detection by minimizing functionals, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 1985.
- ,[13] Zur Theorie der Differentialgleichung y' = f(x, y), Bull. Acad. Polon. Sci. (1932), pp. 221-228. | Zbl
,[14] Segmentation by minimizing functionals: smoothing properties, to appear.
,[15] Existence, uniqueness and approximation of fixed points as a generic property, Bull. Soc. Math. Brasil, 5 (1974), pp. 17-29. | MR | Zbl
,