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The Uniqueness as a Generic Property
for Some One-Dimensional Segmentation Problems.

MICOL AMAR - VIRGINIA DE CICCO(*)

ABSTRACT - We give a uniqueness result concerning the minimizers of the func-
tional proposed by Mumford and Shah in order to study the problem of image
segmentation in Computer Vision Theory. Our result concerns the model
case in dimension one. It is easy to see that the uniqueness of this minimum
problem does not hold, but we state that it is a «generic property» in the
sense that for «almost all» the grey-level functions and the parameters of the
problem, the minimum point is unique.

1. Introduction.

Given a function g E L’(0), with f2 an open bounded subset of R’,
and three real numbers oc, fi, y E (0, + ~ ], let us consider the function-
al

where Su is the jumping set of the function u and Hn -1 is the n - 1
Hausdorff measure on R n.

We can associate to the following minimizing problem

where the minimum is taken on a suitable class of functions.
In the case n = 2, the functional defined in (1.1) was proposed by

Mumford and Shah in [11], in order to give a mathematical description
to a problem of image segmentation in Computer Vision Theory.

(*) Indirizzo degli AA.: S.I.S.S.A., Strada Costiera 11, 34014 Trieste
Italia.
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In [11] and [12], Mumford and Shah conjectured that has mini-

mizers, whose discontinuity set 5~ is piecewise smooth. In [2] Ambro-
sio proved the existence of the solution of (1.2) in the general case of the
space dimension n % 1. Some results about the regularity of Su can be
found in [7].

In [6] Dal Maso, Morel and Solimini studied the particular case
n = 2, giving a constructive proof of the existence.

Further results about this problem can be found in [ 1 ], [3]
and [7].

Moreover, we recall also that in [14], the one-dimensional case has
been considered; in particular the smoothing properties given by the
formulation (1.1) of the segmentation problem have been studied.

It is possible also to consider the functional

and the associated problem

We point out that (1.3) can be considered a particular case of (1.1), in
which we restrict our attention to the piecewise constant functions or
equivalently in which we put « _ + 00 and ~3 = 1. In the case of n = 2, a
constructive method provides the existence of minimizers for problem
(1.4), as proved in [9] and [10]. The general case n ~ 1 is studied in [5]
by Congedo and Tamanini.

However it is not possible, in general, to say that the minimizers for
these problems are unique. To this pourpose, let us consider the simple
case n = 1, S~ _ [0, 1] and the function g: [0, 1] -~ R, g E L °° ([0, 1]) de-
fined by g(x) = X[112, 11 (X), where XE is the characteristic function of the
set E; then the minimum problem (1.4) for that g has, as unique sol-
ution, the function ul for 0  y  1/4 and the function U2 = 1/2
for y &#x3E; 1/4, but for y = 1/4 both functions ul and U2 are solutions.

From these arguments, one could expect that given a function g E
E L 2 (S~), there is uniqueness for these minimum problems except for a
«small» set (possibly countable) of values of the parameter y.

Unfortunately, this is not the case in general, as the following coun-
terexample shows.

Let g(x) = 2/3] + 2/(2/3, n and consider again the problem (1.4)
associated to this function g; then it is easy to prove that for y &#x3E; 1/2 the
unique solution is ul = 1 and for 0  y  1/6 the unique solution is U2 =
= g, but for all the interval 1/6  y  1/2 we have two solutions u3 =
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= (3/2)~1/3, i] and u4 = (1/2) X[O, 2/3] + 2X(2/3, n and finally for y = 1/6 the
functions u2 , U3 and u4 are solutions and for y = 1/2 the functions Ul, U3
and u4 are solutions.

Actually, we will see that for every non constant function g E
([0, 1]) it will be possible to find y E (0, + (0) such that the problems

(1.2) and (1.4) have more than one solution.
On the other hand, fixed y E (0, + 00), we can find g E L 2 ([Og 1]) such

that (1.4) has more minimizers. In fact it is enough to take, for in-
stance, g = (1 + X(0,1/2) + X(1/2, 1), and to observe that Fg (g)

(g), where 9 is the mean value of g on [0, ]. The same property holds
also for problem (1.2) (see Corollary 3.5 and Remark 3.6).

These arguments lead us to observe that the best we can hope is the
uniqueness for these minimum problems only if we restrict the func-

tions g or the values of the parameter y to suitable «large» subsets of
L 2 (~) and I~ + respectively.

The aim of this paper is, indeed, to give a rigorous proof of this fact
for problems (1.2) and (1.4), in dimension n = 1.

The main result is, in fact, that for every y belonging to R + unique-
ness for (1.2) and (1.4) is a generic property of g E L 2 ([o, 1]).

Moreover, for a generic g belonging to L 2 ([0, 1]), uniqueness for
(1.2) and (1.4) is a generic property of y E R + .

To prove these results, we adapt an argument of G. Vidossich
in [15] to our situation, following the outline of Carriero and Pascali
in [4].

More precisely, given a &#x3E; 0 and (3 &#x3E; 0, we construct a countable sub-
set m° ofL~([0, 1]), dense in L 2 ([0, 1]) and a countable subset r of R +,
such that for every g E No and for every y E R + ~1’, problem (1.2) rela-
tive to g has a unique solution. Then, by means of No, for every y E R +,
we can construct a dense GJ-subset 3llt of L  ([0, 1]), such that when the
datum g is chosen in the corresponding problem (1.2) has only one
minimizer. Really this result can be improved by constructing a dense
G¿-subset which works for all the parameters y of a countable subset
contained in R + . On the other hand, we can construct a dense G-subset
of L~([0, 1]) such that when g belongs to this set, problem (1.2) is

uniquely solvable if y belongs to the complement of a countable subset
rg in R + depending on g.

Similar arguments are used to obtain analogous results for problem
(1.4).

Since the complement of a G,-subset of L 2 ([0, 1]) is a set of first cat-
egory and ru is countable it is clear now what we meant by «large» or
«generic» in the previous informal discussion. We observe that, from
this point of view, our results are in line with the genericity results
of [4], [8], [13] and [15].
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In particular, the set JK° will be constructed by means of a suitable
class of piecewise constant functions. In order to find this class, we will
study in detail the properties of the solution, and in particular its form
and its discontinuities, when g is piecewise constant.

The paper is organized as follows: in the second section we reformu-
late the problem in a suitable way to the one-dimensional case, which
permits us to reduce (1.2) and (1.4) to the study of simpler problems,
with fixed jump term; in the third section we state some preliminary
results about the form of the solutions of (1.2) and (1.4) and their con-
tinuous dependence on the datum g; finally section 4 contains the main
theorems.

Acknowledgments. We would like to thank Prof. Dal Maso for sug-
gesting us this problem and for the valuable attention that he gave us
during the research.
A particular thank also to Prof. E. Pascali and Prof. G. Vidossich

for their helpful advices.

2. Formulation of the problem.

We will write L 2, L 00 instead of L 2 ([0, 1]), L 00 ([0, 1]). We will de-
note by R + the subset of strictly positive real numbers.

In the following, for j e N, a partition ~, _ (b~ ) s ± o of [0,1] will be
identified with a subset ... , bj + 1 ~ of [0,1] such that 0 = b°  b1 
 ...  bj+1 = l.

Fixed j E N, we denote by x) the space of all the functions u
on [0, 1] such that there exists a partition ~, _ (bs ) s ± o of [0, 1] such that
the restriction of u to belongs to bs + 1 )), for every
s = 0, ..., j. Therefore, we define H1 = U Xjl. For every j E N we con-
sider also the subset x) of Xi composed by the functions which have
exactly j jumps.

Moreover, we denote by S the space of all the piecewise constant
functions on [0, 1]. It is easy to see that each function u E s can be writ-

ten in the form U E b$ + 1 &#x3E; with f3s E R for s = 0, ..., j and

j EN. s = 
~’

Finally Su is the set of jump points of the function u belonging to ~C I
or s and # is the counting measure on R.
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Given g E L 2 and y E R +, we consider the following functional

where 1 = # (Su ); it is easy to see that the functional depends only on u
and not on its representation. Moreover we consider the functional

and the associated problems:

we note that (2.1) is obtained by (1.1) with a = {3 = 1.
We note that all the results we are going to prove still hold for finite

« and fi different from 1, because it is possible to reduce the general
functional to our case.

We observe that the existence for this problems will be discussed in
the following.

We point out that the results we are going to obtain for problem
(2.3) cannot be derived directly from those for problem (2.2), but since
the method is the same in both cases, we treat explicitly only problem
(2.2), remarking, when it is necessary, the differences and the analo-

gies with problem (2.3).
Given g E L 2, for every r E R + we define

we shall see later that the minimum is achieved.

Moreover, we consider the functional G 9 : [0, + 00] I defined

by
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For every j E N we consider the problem

The existence for this minimum problem follows by the usual compact-
ness property of the sequences of partitions and by the standard direct
methods of calculus of variation applied on each subinterval of

[o,1].
It is clear that

but, in this case, the minimum is not always achieved.
Let us define the non empty subset N9 of N of the integers j for which

the value M9 is attained on at least a function which has exactly j jumps.
Moreover, it can be easily seen that j E Ng if and only if the mini-

mum of G on Xi is achieved and, in this case,

For every j E N and for every y E R +, let us define now

Since (y) ~ yj and y &#x3E; 0, it follows that for every -r E l~ + there
exists the min (y). Moreover we are going to prove thatI

In fact, given U E X’ with # = j, we have

and taking the infimum with respect to u E it follows that

The opposite inequality is trivial.
In order to prove that such an infunum is attained, we fix y E R +

and we choose jo E N such that min = 7%£ (y); this implies that
there exists uo e XJo such that

hence the infimum in (2.10) is attained on uo and actually it is a mini-
mum, moreover (2.9) holds.
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We note that # = jo ; in fact if # = 1  jo we have Fg (uo) =
= G 9 (uo) + yl  G 9 + yjo and this contraddicts (2.10). Therefore uo E
E x) and jo E This proves that

for every y e R +, and that, if (y) = min (y) for some y e R +, then
j E N

every minimizer uo of problem (2.6)jo has exactly jo jumps, i.e.

u E K1j0.
This leads us to define the subset JQ of NY in the following

way:

(see figure 1).

REMARK 2.1. It is clear that (2.11) can be rewritten as

Moreover, if j E Jg, every minimizer u of problem (2.6)j has exactly j
jumps, i.e. u E Wl I

We observe that, by (2.8)~ , mjg (-r) has a linear dependence on y,
hence by (2.12) is a concave function (see figure 1).

Finally we point out that the sequence (MJ)j E N is decreasing since
Xi c Xk for j  k. In particular, if j E Jg, it is strictly decreasing; in
fact if by contradiction j, k E Jg with j  1~ and M9 = M~ , then for every
YER+

which implies k g J g.

We introduce, for every j E Jg, the non empty subsets of R

and

(see figure 1).

REMARK 2.2. It is clear that r9 is a (possible degenerate) interval
of R +, since it can be rewritten as
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and is a concave function. Moreover the intervals ’ j with j E
E J 9 are non overlapping, since the angular coefficient of 7%/ is strictly
increasing with j, and ro is unbounded. Hence for every and every
y belonging to the interior of Pq we have m 9  

Given two consecutive elements j and j’ of J9, the equality m9 (y) =
= m9 (y) is satisfied for at most one y E R + ; finally we note that Fg is the
set of all the endpoints of the intervals hence it is a discrete count-
able subset of R + and the only possible accumulation point is the point
y = 0 (see figure 1).

PROPOSITION 2.3. Fixed y E R +, we consider the non empty sub-
set of Jg

Then is attained on u E X’ if and only if there exists j E J 9 such
that u is a minimum point of the problem which defines In particu-
lar, if there exists a unique j E Jg and if the problem (2.6)j has unique-
ness, then also the problem (2.2) has uniqueness.

PROOF. If j = # (Su) then u E Xi. Hence, if is attained on u,
then

which implies that j E J~ and that M9 is attained on u.
Viceversa, and M9 is attained on u, then j = # (Su) (see Re-

mark 2.1 ). The conclusion follows by

COROLLARY 2.4. (i) If y then problem (2.2) has more than
one solution.

(ii) If for a y belonging to the interior of y9 with j e JQ problem
(2.2) has more than one solution, then for all y belonging to the interior
of rjg problem (2.2) has not uniqueness.

PROOF. (i) Follows by the definition of 1,9 and r9.
(ii) If ul , u2 are minimizers of F9 , then by Proposition 2.3 they

are minimizers of G 9, that is for every s = 1, 2 G 9 (us ) = M 9 . Since for
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every y belonging to the interior of we have

with j fixed, it follows that ul , U2 are minimizers of F.,g. 0

PROPOSITION 2.5. Let Q= 10 be a fixed partition of [0, 1] and
H1Q. be the subset of Xi constituted by the functions u =

I 0 .8s (X)x(b" bu 1)(X) with .8s E H bs + 1» for every s = 0, 1, ... , j.

Then the functional G g defined in (2.5) has exactly one minimizer on
H1Q.

PROOF. The existence is standard. For the uniqueness it is suffi-
cient to observe that xo is a linear subspace of ~C and the functional G 9
is strictly convex on of

PROPOSITION 2.6. Fixed a partition of [0, 1]; if g is a func-
k

tion of the type g = ~ where «i E R for every i = 0, ..., k,P 1+

then fixed j &#x3E; k we have that  mg (y) for every y E R +, 
... , 1~~ and Fg is finite.

PROOF. Since for every j a k g E 9 it follows that M9 = 0. As-
sume by contradiction that, given j &#x3E; k there exists y E R + such that

(Y) = m9 (y), then

But, if we take u = g, we have that Fl (g) ~ yk which is a value strictly
less than and this is not possible.

This implies also that for every j &#x3E; k we obtain that j g then Jg
is finite and is contained and, by (2.13) and Remark 2.2, rg
is the set of points y E R + such that = mg (y) = m9 (y), where j
and j’ are two consecutive elements Therefore it follows that is
finite and contains at most k points.

REMARK 2.7. We may analogously define the minimum problem

moreover we can consider the functional s ~ [0, defined by
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and the associated problem

With suitable modifications, we can also introduce the definitions of
J9, r9 and r9 relative to the problem (2.3).

REMARK 2.8. In order to explain better the previous definitions,
we give an easy example, relative to the functional in which we em-

phasize those concepts.
Let g(x) =~(1/3,2/3) (x). An easy calculation shows that G 9 has one

minimizer ul on hil and one minimizer u4 on x) , and that Gg has two
minimizer U2 and u3 on ~, i . Moreover, ul is the minimizer of on ~C1
for and u4 is the minimizer of on ~C1 for y, where
y = o.l 1. This permits us to construct the following graph:
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3. Preliminary results.

In this section we state some results concerning the form of a sol-
ution of the minimum problem. In particular, we give an explicit for-
mula, in terms of g, for a minimum point E X’ of the problem (2.6)~ ,
and for a minimum point © E 8 of the analogous problem for the func-
tional without the derivative term, and we study where such a mini-
mum point can jump and the continuous dependence of it on the datum
g. Moreover we investigate the non uniqueness: in particular we show
how it is possible, fixed g E L 2 (or y E R + ), to construct y E R + (or g E
e L respectively) for whose minimum problems have non unique-
ness.

REMARK 3.1. It is easy to see that, when j E Jg, a minimizer u of
problem (2.6)j must be of the form

where Q= is a partition of [0,1] and for every s = 0, ... , j /3s is
the solution of the Euler equation in the subinterval (bs , bs + 1 ) of [0, 1],
i.e.

where

and cosh is the hyperbolic cosine. Finally, recalling the definition of Jg
and Remark 2.1, for every s = 0, ... , j - 1 1 ) ~ fis + 1 (bs + 1 ).

REMARK 3.2. In the case of problem (2.3), the situation is even
much easier, so that for j E ig a minimizer function has the form
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where ~, _ (b,Y," is a partition of [0, 1] and for s = 0, ..., j

finally we have 1 for every s = 0, ... , j - 1.

REMARK 3.3. and the solution u(x) =

= li Øs(x) b8+ 1) (x) of problem (2. 6)~ , we have that for every

s = 0, ...,j and every function 

if for some s E 10, ...,jl we have that [38 ~ 
In fact, by Proposition 2.5 the functional G 9 defined in (2.5) is strict-

ly convex on where Q = (bs)j+1s=0, hence G 9 has a unique minimizer
on Xi§i.

In the following two corollaries we will show that, arbitrarily fixed
the non constant datum g E L 2 or the parameter y E R +, it is possible to
choose the parameter Y E R + or the datum g E L 2 respectively such
that problems (2.2) and (2.3) have non uniqueness.

COROLLARY 3.4. For every non constant function 

(i) there exists - E R + such that Fg has more than one mini-
mizer ; 

(ii) there exists y E R + such that F9 has more than one mini-
mizer. 

PROOF. Let us fix a non constant function g e L .

(i) Let uo be the unique solution of the equation

with the Neumann conditions u’(0) = 0 = ~’(1); then by definition
i i

Mo = )2 dx + j(uo - g)2 dx. By (3.2), since g is not constant, also uo
is not constant; moreover 1]), hence there exists b ~(0,1)
such that Uo (b) ~ 0. Let now v(z) = [30 (x) b~ (x) + /3i (x) X(b, 1) (x), where
[30 and [31 are the solutions of the equation (3.2) with the Neumann con-
ditions [3ó (0) = 0 = [3ó (b) and [31 (b) = 0 = [31 (1) respectively.
We observe that clearly uo does not satisfy the Neumann conditions
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in [0, b] and in [b,1 ], hence it follows that  i.e.

This implies that, if - = min Tg0, then - &#x3E; 0; since y by Corollary
2.4 (i) we obtain that F9 has at least two minimizers.

. Since g is not constant, then for a proper choice of b we

have

which implies, after some calculation,

Now, the same arguments used in (i) give that y = min Tg0 is strictly po-
sitive and P’ has at least two miinimizers.

COROLLARY 3.5. For every there exists g E L 2 such that
Fj has more than one minimizer.

PROOF Let us fix g E L 2 ; by Corollary 3.4 (i) there exists 
such that F9 has more than one minimizer. We can find a E R + such

= y£ then defining v = ylu and g = ý;, g, it follows that
(u) = F~ (v). This implies that, if ul , ... , ul are minimizers for F9 ,

th n V, x- u ... , ylui are minimizers for 

REMARK 3.6. It is clear that Corollary 3.5 can be proved with the
same reseating technique also for the functional F9.

Moreover the previous proof shows that there exists gee 00 (or g
piecewise constant) such that has more than one minimizer.

We want to study now the continuous dependence of the solution u
of problem (2.2) on the datum g. We will prove that this dependence
holds when problem (2.2) has uniqueness, and in this case it is a direct
consequence of the one-dimensional case of the results of compactness
and lower semicontinuity of Ambrosio in [1].
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LEMMA 3.7. Let (gn) be a sequence of functions in L 2 such that
gn - g strongly in L 2.

Fix y E R + and assume that problem (2.2) for is uniquely solv-
able by ii E Let (ün) be a sequence of functions in such that for

every n E N F9n (ii takes the minimum value. strongly
in L 1.

PROOF. By the convergence of gn to g in L 2, it follows that

IIgnllL2 ~ CI. ·
Since iin is a minimizer, it is easy to verify that (~~) 5 F:n (ic) ~

~ C2 , where C2 depends on CI and the H-norm of ii.
This implies that there exists a constant C3 depending on CI and C2

such that 2 + 5 C3 ; moreover # (S, ) 5 C2 , hence by a com-
pactness result due to Ambrosio (see [1] Theorem 2.1), there exists a
subsequence such that strongly in L 1, with -u E=- X 1.

To show that u coincide with ii, we apply again Theorem 2.1 in [ 1 ]
obtaining, after some calculation,

This shows that u is a solution of (2.2) for hence, by uniqueness,
u = u and all the sequence Un converges to u. 0

To conclude this section, we want to show that, when the datum g E
E L 2 is piecewise constant, a solution of problem (2.6)j (and hence a sol-
ution of problem (2.2)) can jump only where g jumps.

We note that this fact had already appeared in the examples report-
ed in the introduction; in general this kind of behaviour is a feature of
the minimum points independently of the choice of g, if g is piece-
wise constant.

for every partition 0 = of [0, 1] we consider the
set of the functions g of the type

with ai E R for every i = 0,..., k; we remark that is a linear sub-

space of £2.
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k

LEMMA 3.8. Let be a function belonging to

X,,. Fixed j E and let u be a solution of (2.6)j of the type

where Q= is a partition of [0, 1 ]. Then

PROOF. We recall that by Proposition 2.6 Jg is contained in

~0, ...,1~~.
We argue by contradiction. Suppose that there exist ..., j}

and i E 10, ... , 1~~ such that bs E (ai , ai , 1). First of all we observe that,
since j E Jg, f3s - I ~3~ (b,), hence we may assume that f3s - 1 (bs) &#x3E;

&#x3E; ~3s (bs) (the other case following by analogous arguments) and we can
consider the following two cases:

(The third is similar to the first one).
For every 0  E  bs - ai we define a function Ue: [0, 1] - R by

In the case (1) we note that there exists 6 &#x3E; 0 such that for every x such
we have

Hence when -  8 we obtain

This contradicts the hypothesis that u is a minimizer of G 9.
In the case (2) we may consider the following two subcases:
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(The last (bs) - «i  oci - (bs) can be studied similarly to the
(2)J.

If (2)a is satisfied, then there exists 3 &#x3E; 0 such that for every x with
we have ,~~ _ 1 (x) - «i &#x3E; ai - ,~~ (b~) and ~~ _ 1 (x) &#x3E;

&#x3E; B3 (bs). Hence for every e  d we obtain again  0. Now
we consider the case where (2)b is satisfied. First we remark that from
(3.1) for every x E (bs, we have

and so

then since c, = ,~s (bs ), we can conclude that {3~ (x)  0 for every x E
E ai + 1 ). Therefore p, is a strictly decreasing function on (bs, 
Now for every 0  ~  ai + 1 - bs we define a function v,~ : [0, 1] -R
by

We point out that there exists d &#x3E; 0 such that for every x with bs  x 
 bs + d we have!3s - &#x3E; !3s (x); hence for every n  8, using (2)b and the
fact that !3; (x)  0 implies that !3s (x)  !3s (bs), we obtain

This contradiction concludes the proof.

COROLLARY 3.9. Let g, k and j as in Lemma 3.8 and y e R + . Then
the minimizers of the functional F§ with j iumps are at More-
over the minimizers of 9 are at most k 

p 
J

PROOF. By Proposition 2.5, for a fixed partition of

[o,1 ], G 9 has exactly one solution u e by the preceeding lemma the
partitions corresponding to a minimizer of (2.6)j must be
contained in the partition P = (ai)k+1i=0 and hence they can be at most

The conclusion follows since Jg c 10, ..., k} (see Proposition 2.6)
and
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REMARK 3.10. It is clear that if we repeat step by step the argu-
ments used in Remark 3.3, Lemma 3.7 and Lemma 3.8 cancelling out
the term with the derivative in the functional F.9, we obtain the same
results also for F9.

4. Main results.

In Theorem 4.3 we will prove that for «almost all» g e ~1"C~ we have
uniqueness for problem (2.6)~ , for each 0 ~ j ~ k; but to obtain this re-
sult we need before the following lemmas.

LEMMA 4.1. Assume that 0 ~ a2o  ail - a i2  and that g =
Let us consider for m = 2, 3 the following functionals

Assume that for m = 2,3 um are minimum points for (4. 1 )m on

then

PROOF. Since U2 is a minimum point for (4.1 )2, it follows that

Moreover, if we had that

then it should be U3 = g on (a~ , a23 ), that means U3 = 0 on (ai2’ a23 ); but
by Remark 3.1 it is not possible, since Ug is a minimum point for (4.1 )3 .
Hence it is clear that
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and this inequality together with (4.3) gives (4.2). This concludes the
proof.

LEMMA 4.2. Let us fix a partition P = (ai)k+1i=0 of [o,1] and for any
choice of (ao , ... , ak) let us define a function g = 2 &#x3E;

belonging to 3K,. Let j e 0 ... k and let Q= =o be
two different partitions of [o,1] such that ~P. Let us define two
functions Q, R: 1--~ I~ by

and

where xQ and ~CR are defined as in Proposition 2.5. Then Q and Rare
two different polynomial functions and the set

is an open set dense in 

PROOF. Clearly Q and R are polynomial functions of degree 2 in the
k + 1 variables «o , ... , «k . The proof is accomplished if we prove that
the equality Q(ao, ... , «z ) = R(ao, ..., ak) is not identically satisfied.
Since q is different from there exists 1 belonging to (0, ..., j ) such
that qm = rm for every m E ~0, ..., 11 and rl + 1; we suppose that

 rl + 1. By hypothesis there exist io , i2 , i3 E fO, ... , kl such that
ql = ri = ajo, ql + 1 = ai2 and I = ai3. Let us take now «o , y ... , 9 ak where

a4 = 1 and «m = 0 for io. Then by Lemma 4.1 with ail = ai,, + 1
we have that «k) ... , «k). This concludes the
proof.

THEOREM 4.3. Given a partition P = (ai)k+1i=0 of [0, ], there exists a
subset ~’iZ~ of 3l1, , which is dense in ~~ with respect to the L 2_topology,
and such that for every g E MOO problem (2.6)j has a unique solution, for
every j E Jg.

PROOF. Let e = be a partition of [0,1] and let g E ~’1Z~. Let
j E J ; by Proposition 2.6 we have that 0 ~ j  k. If j = k, then for every
g E X,, the problem (2.6)k has the unique solution g.
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Now we define

where the set is defined by (4.4), and

by Lemma 4.2 and by Baire’s theorem, is an open set dense in 
I

and hence 3K) is dense in Mo with respect to the L 2-topology. Moreover
for every g E 3K) the problem (2.6)j has uniqueness, for every j E

E In fact let g = E be a function belonging to J4.
Then (xo...., «k) E for with # Q = # [R = j + 2 and
for every 0 ~ j  k. We suppose by contradiction that there exist jo E
E Jg and two different solutions u, v E XJo of the problem (2.6)~0 (see Re-
mark 2.1). let Q and s1 the partitions associated to u and v; by Proposi-
tion 2.5 and are different and by Lemma 3.8 Q and s1 are contained
in T. Hence from the definition of must be different
from R(«o , I ... , «k), where Q and R are defined as in Lemma 4.2. But
since u and v are minimizers of the problem (2.6)~0, we have that
Q(«o , ... , «k) = Mlo = R(oco, ... , this contradiction concludes the

proof.

THEOREM 4.4. There exists a countable set Nlo dense in L 2 and a
countable set 1-’ in R + such that for every g E JKo and y E R + ~ I’ prob-
lem (2.2) admits a unique solution.

PROOF. For every k E N we consider the partition rPk =

= {0, 1/k, 2/1~, ... , 1 ~ of [0, ]; hence by Theorem 4.3 there exists a set 3Ki
dense in Mok such that for every g E 3Ki problem (2.6)j has a unique sol-
ution for every j E Jg. By the density of characteristic functions in L 2
the set

is dense in Moreover by the separability of L , there exists a count-
able set which is dense in L 2. Let us consider r = U rg,
where 1’g is defined by (2.13). Since, by Remark 2.2, Fg is a countable
set and 3K° is countable, then 1-’ is a countable set.
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Now, fixed g E ~o and y E I~ + B 1’ the uniqueness for the problem
(2.2) follows by the uniqueness for problem (2.6)~ , by Proposition 2.3
and by the definition of r..

In the following theorem we give a «genericity» result: we establish
that the uniqueness of the solution to problem (2.2) is a generic
property.

THEOREM 4.5. Let us assume that there exists a countable set ~o,
which is dense in L 2, and a countable set 1’ in R + such that for every
g E W9 and for every y B r problem (2.2) has a unique solution.
Then for every y E R + there exists a Gd-set 3K§f dense in L 2 such that
for each g E 3K§f the solution of problem (2.2) is unique.

PROOF. Let W9 be as in the statement of the theorem. We fix y E
and g e L  and define

We observe that S(g) ;e 0, since as we have seen, there exists at least one
solution of (2.2).

Let us define D: £2 ~ [0, + 00] by

This definition implies that (2.2) has a unique solution if and only if
D(g) = 0.

Now, we are going to prove that the function D is continuous in the
points of the set 3K°.

Let us fix 1 E No and suppose that there exist n e N and a sequence
( fz) in L 2 such that fk converges to f in the L 2-topology and

This implies that there are two sequences (Vk) and (Uk) in S( fk) such
that

On the other hand, since f E by hypothesis there exists a unique
solution of the problem
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Therefore from Lemma 3.7 we can conclude that Vk and Uk converge to
u f strongly in L 1; but this contradicts (4.5). Hence for every f E 3K° and
n E N there exists an open neighborhood Uf of f in the L 2_topology such
that D( g)  1 /n for all g E Uf .

At this point, if we denote Un = f E Ufn, we have that Un is an open
subset of L 2 with respect to the L 2_topology. Then let us define =

= n Un ; is a Grset in L 2 and, by construction, contains 3K° ; so, by
nEN

hypothesis, 3K§f is dense in L 2. Moreover we observe that, fixed g E
E 3K§f , for each n E N, g belongs to Un and so D(g) = 0.

This proves the theorem when Let now y E 1’ and fix
Yo E R + B I’. Then there exists « &#x3E; 0 such that «Yo = y. By the first part
of the theorem, we know that for every g E mtio the problem

has only one solution. Multiplying this expression by «, defining v =
= and taking into account that # (Su ) _ # (Sv ) we obtain that, if
f E fl = ~1CY , then the problem

has only one minimizer. Since yÇ is clearly a dense G,-set the proof
is accomplished.

COROLLARY 4.6. If ro is a countable subset of R +, then there
exists a dense Grset 3K) such that for every g e and for every y e ro
problem (2.2) has uniqueness.

PROOF. It is enough to define 3k) = y fl e ro 3K) and to observe that by
Baire’s lemma the countable intersection of dense Grset is still a dense
Gs-set.

In the following theorem, we shall construct a dense Grsubset of
L 2([0, 1]) such that when g belongs to this set, problems (1.2) is unique-
ly solvable if y belongs to the complement of a countable subset 7~ in
R + depending on g.
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THEOREM 4.7. There exists a G~-set X* dense in L 2 such that for
every g E and y E R + where Fg is countable, problem (2.2) has
uniqueness.

PROOF. In the previous corollary we may choose in particular Fo =
Q ’, where Q + denotes the set of the positive rational numbers and we
can define 3~1* : = 3K£. Let us take now g E 3K*. Since 1’o is dense in R +,
we have that its intersection with the interior of Fg is non empty, for
every interval rg. Moreover, when y is a rational number belonging to
the interior of by Corollary 4.6 problem (2.2) relative to g has
uniqueness. Hence by Corollary 2.4, we have uniqueness for every y
belonging to the interior of and this is true for every h E Jg. The
proof follows, recalling that R + = P U ( U intl’h), where int rh de-
notes the interior of 

h

REMARK 4.8. It is clear that there is nothing difference in the

proof if we substitute the functional Fg with hence the preceeding
results continue to hold.

REMARK 4.9. We observe that Theorem 4.7 cannot be improved,
that is we cannot expect, fixed to have a unique solution for
problem (2.2) for every y belonging to the complement in R + of a
countable set depending on g. In fact, as we saw in the second example
of the introduction, there are functions g E L 2 for which we have to re-
move a whole interval of R + in order to have uniqueness.
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