@article{RSMUP_1980__62__251_0, author = {Be\v{c}v\'a\v{r}, Jind\v{r}ich}, title = {Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {251--259}, publisher = {Seminario Matematico of the University of Padua}, volume = {62}, year = {1980}, zbl = {0436.20036}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1980__62__251_0/} }
TY - JOUR AU - Bečvář, Jindřich TI - Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1980 SP - 251 EP - 259 VL - 62 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1980__62__251_0/ LA - en ID - RSMUP_1980__62__251_0 ER -
%0 Journal Article %A Bečvář, Jindřich %T Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup %J Rendiconti del Seminario Matematico della Università di Padova %D 1980 %P 251-259 %V 62 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1980__62__251_0/ %G en %F RSMUP_1980__62__251_0
Bečvář, Jindřich. Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup. Rendiconti del Seminario Matematico della Università di Padova, Tome 62 (1980), pp. 251-259. http://www.numdam.org/item/RSMUP_1980__62__251_0/
[1] Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136. | Numdam | MR | Zbl
,[2] Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.
,[3] Infinite abelian groups I, II, Academic Press, 1970, 1973. | Zbl
,[4] Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. | MR | Zbl
- - ,[5] E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. | Numdam | MR | Zbl
-[6] On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. | MR | Zbl
,[7] On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. | MR | Zbl
,[8] Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. | MR | Zbl
,[9] Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. | MR | Zbl
,[10] Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. | MR | Zbl
,[11] Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526. | MR | Zbl
,[12] Ob ε-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167.
,[13] On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. | MR | Zbl
,