Abelian groups in which every Γ-isotype subgroup is a pure subgroup, resp. an isotype subgroup
Rendiconti del Seminario Matematico della Università di Padova, Tome 62 (1980), pp. 251-259.
@article{RSMUP_1980__62__251_0,
     author = {Be\v{c}v\'a\v{r}, Jind\v{r}ich},
     title = {Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {251--259},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {62},
     year = {1980},
     zbl = {0436.20036},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1980__62__251_0/}
}
TY  - JOUR
AU  - Bečvář, Jindřich
TI  - Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1980
SP  - 251
EP  - 259
VL  - 62
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1980__62__251_0/
LA  - en
ID  - RSMUP_1980__62__251_0
ER  - 
%0 Journal Article
%A Bečvář, Jindřich
%T Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1980
%P 251-259
%V 62
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1980__62__251_0/
%G en
%F RSMUP_1980__62__251_0
Bečvář, Jindřich. Abelian groups in which every $\Gamma $-isotype subgroup is a pure subgroup, resp. an isotype subgroup. Rendiconti del Seminario Matematico della Università di Padova, Tome 62 (1980), pp. 251-259. http://www.numdam.org/item/RSMUP_1980__62__251_0/

[1] J Bečvář, Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136. | Numdam | MR | Zbl

[2] S.N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.

[3] L. Fuchs, Infinite abelian groups I, II, Academic Press, 1970, 1973. | Zbl

[4] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. | MR | Zbl

[5] J.M. Irwin - E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. | Numdam | MR | Zbl

[6] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. | MR | Zbl

[7] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. | MR | Zbl

[8] R.C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. | MR | Zbl

[9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. | MR | Zbl

[10] K.M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. | MR | Zbl

[11] K.M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526. | MR | Zbl

[12] V.S. Rochlina, Ob ε-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167.

[13] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. | MR | Zbl