Rendiconti

del
 SEminario Matematico della Università di Padova

JINDŘICH BEČVÁŘ

Abelian groups in which every Γ-isotype subgroup is a pure subgroup, resp. an isotype subgroup

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 251-259
http://www.numdam.org/item?id=RSMUP_1980__62__251_0
© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.itt) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Abelian Groups in which Every Γ-Isotype Subgroup is a Pure Subgroup, Resp. an Isotype Subgroup.

Jindrích Bečvář (*)

All groups considered in this paper are abelian. Concerning the terminology and notation, we refer to [3]. In addition, if G is a group then G_{t} and G_{p} are the torsion part of G and the p-component of G_{t} respectively. Let G be a group and p a prime. Following Rangaswamy [10] we say that a subgroup H of G is p-absorbing, resp. absorbing in G if $(G / H)_{p}=0$, resp. $(G / H)_{t}=0$. A subgroup H of G is said to be isotype in G if $p^{\alpha} H=H \cap p^{\alpha} G$ for all primes p and all ordinals α. Recall that if H is p-absorbing in G then $p^{\alpha} H=H \cap p^{\alpha} G$ for every ordinal α (see lemma 103.1 [3]).

Let \mathbb{N} be the set of all positive integers, p_{1}, p_{2}, \ldots be the sequence of all primes in the natural order and \mathscr{H} the class of all sequences $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, where each α_{i} is either an ordinal or the symbol ∞ which is considered to be larger than any ordinal. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. A subgroup H of G is said to be Γ-isotype in G if $p_{i}^{\beta} H=H \cap p_{i}^{\beta} G$ for every $i \in \mathbb{N}$ and for every ordinal $\beta \leqslant \alpha_{i}$. If $\Gamma=(0,0, \ldots), \Gamma=(1,1, \ldots), \Gamma=(\omega, \omega, \ldots), \Gamma=(\infty, \infty, \ldots)$ then Γ-isotype subgroups of G are precisely subgroups, neat subgroups, pure subgroups, isotype subgroups respectively. Note that if $\Gamma=$ $=\left(\alpha_{1}, \alpha_{2}, \ldots\right), \Gamma^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots\right) \in \mathscr{H}$ and $\Gamma \leqslant \Gamma^{\prime}$ (i.e. $\alpha_{i} \leqslant \alpha_{i}^{\prime}$ for each $i \in \mathbb{N}$) then every Γ^{\prime}-isotype subgroup of G is Γ-isotype in G. Let G be a p-group, γ be an ordinal or the symbol ∞. A subgroup H of G is said to be γ-isotype in G if $p^{\beta} H=H \cap p^{\beta} G$ for every ordinal $\beta \leqslant \gamma$.

A direct sum of cyclic groups of the same order p^{e} is denoted by B_{e}.
(*) Indirizzo dell'A.: Matematicko-Fyzikální Fakulta, Universita Karlova Sokolovská 83-18600 Praha 8 (Československo).

The purpose of this paper is to describe the classes of all groups in which every Γ-isotype subgroup is a neat, a pure, an isotype subgroup, a direct summand, an absolute direct summand, an absorbing subgroup respectively. Here are so generalized the results of this type from [1], [2], [4], [6]-[9], [11], [13] (see [1]-introduction).

Lemma 1. Let G be a torsion group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. A subgroup H of G is Γ-isotype in G iff $H_{p_{i}}$ is α_{i}-isotype in $G_{p_{i}}$ for every $i \in \mathbf{N}$.

Proof. Obvious.
Lemma 2. Let G be a p-group, $g \in G$ an element of order $p^{i}, k \in \mathbb{N}$, $k \leqslant i$. The subgroup $\langle g\rangle$ is k-isotype in G iff $h^{g}\left(p^{k-1} g\right)=k-1$. Moreover, the subgroup $\langle g\rangle$ is pure (isotype) in G iff $h^{\boldsymbol{q}}\left(p^{i-1} g\right)=i-1$.

Proof. Easy.
Lemma 3. Let H be a subgroup of a group G and p a prime. If G_{p} is divisible and $p H=H \cap p G$ then $p^{\alpha} H=H \cap p^{\alpha} G$ for every ordinal α.

Proof. Obviously, H_{p} is neat in G_{p} and hence H_{p} is divisible. Write $H=H_{p} \oplus H^{\prime}$ and $G=G_{p} \oplus G^{\prime}$, where $H^{\prime} \subset G^{\prime}$. Since H^{\prime} is p-absorbing in G^{\prime}, the result follows.

Lemma 4. Let G be a p-group and $k \in \mathbb{N}$. If every k-isotype subgroup of G is a pure subgroup of G then either $G=D \oplus B$, where D is divisible and $p^{k-1} B=0$, or $p^{k-1} G=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

Proof. Let $G=D \oplus B$, where D is nonzero divisible and B is reduced. Suppose $B=\langle a\rangle \oplus B^{\prime}$, where $o(a)=p^{j}$ and $j \geqslant k$; let $d \in D$ be an element of order p^{j+1}. By lemma $2,\langle a+d\rangle$ is k-isotype in G but is not pure in G-a contradiction. Hence $p^{k-1} B=0$.

Let G be reduced. Suppose $G=\langle a\rangle \oplus\langle b\rangle \oplus G^{\prime}$, where $o(a)=p^{j}$, $o(b)=p^{m}$ and $m-2 \geqslant j \geqslant k$. By lemma 2, the subgroup $\langle a+p b\rangle$ is k-isotype in G but is not pure in G-a contradiction. If B is a basic subgroup of G then obviously $G=B=B_{1} \oplus \ldots \oplus B_{k-1} \oplus B_{m} \oplus B_{m+1}$, where $m \geqslant k$, and hence $p^{k-1} G=B_{e} \oplus B_{e+1}(e=m-k+1)$.

Lemma 5. Let G be a group, p a prime and $\alpha<\beta$ ordinals. If $p^{\beta} G_{p}$ is not essential in $p^{\alpha} G_{p}$ and either $p^{\beta+1} G_{p}$ is nonzero or $p^{\beta} G$ is not torsion then there is a sugroup H of G with following properties: H is q-absorbing in G for every prime $q \neq p, p^{\nu} H=H \cap p^{\nu} G$ for every ordinal $\gamma \leqslant \alpha+1$ and $p^{\beta+1} H \neq H \cap p^{\beta+1} G$.

Proof (see lemma 3 [1]). There is a nonzero element $n \in p^{\alpha} G_{p}[p]$ such that $\langle n\rangle \cap p^{\beta} G_{p}=0$. Let $g \in p^{\beta} G$ such that either $0 \neq p g \in G_{p}$ or $o(g)=\infty$. Write $X=\left\langle p^{\beta} G[p], p g, n+g\right\rangle$. It is easy to see that $\langle n\rangle \cap X=0$. Let H be an $\langle n\rangle$-high subgroup of G containing X. $\mathrm{By}[5], p^{\nu} H=H \cap p^{\nu} G$ for every ordinal $\gamma \leqslant \alpha+1$. Since $p^{\beta} G[p] \subset H$, $p^{\beta+1} H \neq H \cap p^{\beta+1} G$. By lemma 6 [1], H is q-absorbing in G for every prime $q \neq p$.

Theorem 1. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. The following are equivalent:
(i) Every Γ-isotype subgroup of G is a pure subgroup of G.
(ii) For every $i \in \mathbb{N}$, if $\alpha_{i}<\omega$ then either $G_{p_{i}}=D \oplus B$, where D is divisible and $p_{i}^{\alpha_{i}-1} B=0$, or G is torsion and $G_{p_{i}}$ is elementary or G is torsion and $p_{i}^{\alpha_{i}-1} G_{p_{i}}=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

Proof. Assume (i). For each $i \in \mathbb{N}$, every α_{i}-isotype subgroup of $G_{p_{i}}$ is Γ-isotype in G and hence pure in $G_{p_{i}}$. By lemma 4 and by [4], $G_{p_{i}}$ is as claimed. Suppose G is not torsion and $\alpha_{i}=0$ for some $i \in \mathbb{N}$. If $g \in G$ is an element of infinite order then $g \notin\left\langle p_{i} g, G_{p_{i}}\right\rangle$ and a subgroup H maximal with respect to the properties $g \notin H,\left\langle p_{i} g, G_{p_{i}}\right\rangle \subset H$ is Γ-isotype in G by lemma $6[1]$. Since H is pure in G, there is an element $h \in \boldsymbol{H}$ such that $p_{i} g=p_{i} h$, hence $g-h \in G_{p_{i}} \subset H$-a contradiction. Finally, if G is not torsion, $\alpha_{i}<\omega$ for some $i \in \mathbb{N}$ and $p_{i}^{\alpha_{i}-1} G_{p_{i}}=B_{e} \oplus B_{e+1} \neq 0$ then $p_{i}^{\alpha_{i}+e} G_{p_{i}}$ is not essential in $p_{i}^{\alpha_{i}-1} G_{p_{i}}$, $p_{i}^{\alpha_{i}+e} G$ is not torsion and lemma 5 implies a contradiction.

Assume (ii). Let H be an Γ-isotype subgroup of G and $i \in \mathbb{N}$. Write $\beta=\alpha_{i}$ and $p=p_{i}$. If $\beta \geqslant \omega$ then H is p-pure in G. If $\beta=0$ then by assumption G is torsion and G_{p} is elementary; write $G=G_{p} \oplus G^{\prime}$ and $H=H_{p} \oplus H^{\prime}$. For every $k \in \mathbb{N}, p^{k} H=H^{\prime}=H \cap G^{\prime}=H \cap p^{k} G$, i.e. H is p-pure in G. Let $0<\beta<\omega$. Suppose that $p^{\beta-1} G_{p}=B_{e} \oplus B_{e+1}$ and G is torsion. By lemma 1 ,

$$
p\left(p^{\beta-1} H_{p}\right)=H_{p} \cap p\left(p^{\beta-1} G_{p}\right)=p^{\beta-1} H_{p} \cap p\left(p^{\beta-1} G_{p}\right),
$$

i.e. $p^{\beta-1} H_{p}$ is neat in $p^{\beta-1} G_{p}$. By [9], $p^{\beta-1} H_{p}$ is pure in $p^{\beta-1} G_{p}$ and hence H_{p} is pure in G_{p}. Consequently, H is p-pure in G. Suppose that $G_{p}=D \oplus B$, where D is divisible and $p^{\beta-1} B=0$. Now,

$$
p\left(p^{\beta-1} H\right)=H \cap p\left(p^{\beta-1} G\right)=p^{\beta-1} H \cap p\left(p^{\beta-1} G\right)
$$

Since $p^{\beta-1} G_{p}$ is divisible, $p^{\beta-1} H$ is p-pure in $p^{\beta-1} G$ by lemma 3 . Therefore H is p-pure in G.

Theorem 2. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathfrak{J e}$. Every Γ-isotype subgroup of G is a direct summand of G iff the following conditions hold:
(i) $G=T \oplus D \oplus N$, where T is torsion reduced, D is divisible and N is a direct sum of a finite number mutually isomorphic torsionfree rank one groups;
(ii) if $\alpha_{i}<\omega$ then either $p_{i}^{\alpha_{i}-1} T_{p_{i}}=0$ or G is torsion and $G_{p_{4}}$ is elementary or G is torsion and $p_{i}^{\alpha_{i}-1} G_{p_{i}}=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$;
(iii) if $\omega \leqslant \alpha_{i}$ then $T_{p_{i}}$ is bounded.

Proof. If every Γ-isotype subgroup of G is a direct summand of G then every isotype subgroup of G is a direct summand of G and every Γ-isotype subgroup of G is pure in G. Now, theorem $2[1]$ and theorem 1 imply (ii). Conversely, by theorem 1, every Γ-isotype subgroup of G is pure in G and by [2], every pure subgroup of G is a direct summand of G.

For the similar result see [12].
Theorem 3. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathfrak{H}$. Every Γ-isotype subgroup of G is an absolute direct summand of G iff G satisfies one of the following two conditions:
(i) G is torsion and for every $i \in \mathbb{N}$,
if $\alpha_{i}=0$ then $G_{p_{i}}$ is elementary,
if $0<\alpha_{i}$ then either $G_{p_{i}}$ is divisible or $G_{p_{i}}=B_{e}$ for some $e \in \mathbf{N}$.
(ii) $\alpha_{i} \neq 0$ for every $i \in \mathbb{N}$ and either G is divisible or $G=$ $=G_{t} \oplus R$, where G_{t} is divisible and R is of rank one.

Proof. Every Γ-isotype subgroup of G is an absolute direct summand of G iff every Γ-isotype subgroup of G is a direct summand of G and every direct summand of G is an absolute direct summand of G. Now, theorem 2 and [11] imply the desired result.

Theorem 4. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. The following are equivalent:
(i) Every Γ-isotype subgroup of G is a neat subgroup of G.
(ii) If $\alpha_{i}=0$ for some $i \in \mathbf{N}$ then $G_{p_{i}}$ is elementary and G is torsion.

Proof. Assume (i). Every α_{i}-isotype subgroup of $G_{p_{i}}$ is obviously Γ-isotype in G and hence neat in $G_{p_{i}}$. By [11], if $\alpha_{i}=0$ then $G_{p_{i}}$ is elementary. Suppose that G is not torsion and $\alpha_{i}=0$ for some $i \in \mathbb{N}$. If $g \in G$ is an element of infinite order then a subgroup H of G maximal with respect to the properties $g \notin H,\left\langle p_{i} g, G_{p_{i}}\right\rangle \subset H$ is Γ-isotype in G by lemma 6 [1] but obviously it is not a neat subgroup of G.

Assume (ii). If $\alpha_{i}>0$ for each $i \in \mathbb{N}$ then every Γ-isotype subgroup of G is neat in G. Suppose G is torsion and if $\alpha_{i}=0$ then $G_{p_{i}}$ is elementary. If H is an Γ-isotype subgroup of G then $H_{p_{i}}$ is α_{i}-isotype in $G_{p_{i}}$ for each $i \in \mathbb{N}$ and hence neat in $G_{p_{i}}$ by [11]. Consequently, H is neat in G.

Lemma 6. Let G be a group, p a prime and β an ordinal. Let H be a $p^{\beta} G$-high subgroup of G and $a \in p^{\beta} G$. If $p^{\alpha} H_{p} \neq 0$ for each ordinal $\alpha<\beta$ then there is a subgroup X of G such that $p^{\alpha} X=X \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta$ and $p^{\beta} X=\langle a\rangle$.

Proof. If $(o(a), p)=1$ then write $X=\langle a\rangle$ and all is well. Hence suppose that $p \mid o(a)$ or $o(a)=\infty$.

If β is not a limit ordinal then there is an element $b \in p^{\beta-1} G$ such that $p b=a$. If $b \notin p^{\beta} G$ then write $a_{\alpha}=b$ for every ordinal $\alpha<\beta$ and $X_{\beta}=\langle b\rangle$. If $b \in p^{\beta} G$ and $0 \neq c \in p^{\beta-1} H[p]$ then $b^{\prime}=b+c \in p^{\beta-1} G \backslash p^{\beta} G$, $p b^{\prime}=a$; in this case write $a_{\alpha}=b^{\prime}$ for every ordinal $\alpha<\beta$ and $X_{\beta}=\left\langle b^{\prime}\right\rangle$. Obviously $X_{\beta} \cap p^{\beta} G=\langle a\rangle$.

Let β be a limit ordinal. For each ordinal $\alpha<\beta$ there is an element $x \in p^{\alpha} G \backslash p^{\beta} G$ such that $a=p x$. We use the transfinite induction to define the sets $X_{\alpha}, \alpha \leqslant \beta: X_{0}=\langle a\rangle ;$ obviously $X_{0} \cap p^{\beta} G=$ $=\langle a\rangle$ and $\left(G \cap X_{0}\right)[p] \subset\langle a\rangle$. Further, $X_{1}=\left\langle X_{0}, a_{1}\right\rangle$, where $a_{1} \in$ $\in p G \backslash p^{\beta} G$ and $p a_{1}=a$; obviously $X_{1} \cap p^{\beta} G=\langle a\rangle$ and $\left(p G \cap X_{1}\right)[p] \subset$ $c\langle a\rangle$. Suppose that $X_{\alpha-1}$ has been defined such that $X_{\alpha-1} \cap p^{\beta} G=\langle a\rangle$ and $\left(p^{\alpha-1} G \cap X_{\alpha-1}\right)[p] \subset\langle a\rangle$, define X_{α}. If there is an element $x \in X_{\alpha-1} \cap p^{\alpha} G$ such that $p x=a$ then let $a_{\alpha}=x$ and $X_{\alpha}=X_{\alpha-1}$. Otherwise let $X_{\alpha}=\left\langle X_{\alpha-1}, a_{\alpha}\right\rangle$, where $a_{\alpha} \in p^{\alpha} G \backslash p^{\beta} G$ and $p a_{\alpha}=a$. We show that $X_{\alpha} \cap p^{\beta} G=\langle a\rangle$. Let $y+z a_{\alpha} \in p^{\beta} G$, where $y \in X_{\alpha-1}$ and z is an integer. Obviously $p y \in X_{\alpha-1} \cap p^{\beta} G=\langle a\rangle ;$ write $p y=m a$, where m is an integer. If $(p, m)=1$ then there are integers u, v such that $u p a+v m a=a$ and hence $a=p(u a+v y), u a+v y \in X_{\alpha-1} \cap p^{\alpha} G$ -a contradiction. Hence $m=p m^{\prime}, p\left(y-m^{\prime} a\right)=0$ and $y-m^{\prime} a \in$ $\in\left(p^{\alpha-1} G \cap X_{\alpha-1}\right)[p] \subset\langle a\rangle$. Therefore $y \in\langle a\rangle, y+z a_{\alpha} \in\left\langle a_{\alpha}\right\rangle \cap p^{\beta} G=$ $=\langle a\rangle$. Further we show that $\left(p^{\alpha} G \cap X_{\alpha}\right)[p] \subset\langle a\rangle$. Let $y+z a_{\alpha} \in$ $\in\left(p^{\alpha} G \cap X_{\alpha}\right)[p]$, where $y \in X_{\alpha-1}$ and z is an integer; hence $p y=-z a$.

If $(p, z)=1$ then $a=p(u a-v y)$, where u, v are integers, $u a-v y \in$ $\in X_{\alpha-1} \cap p^{\alpha} G-a$ contradiction. Hence

$$
z=p z^{\prime}, \quad y+z^{\prime} a \in\left(p^{\alpha-1} G \cap X_{\alpha-1}\right)[p] \subset\langle a\rangle
$$

and therefore $y \in\langle a\rangle$. Now, $y+z a_{\alpha} \in\langle a\rangle$. Finally, if α is a limit ordinal then let $X_{\alpha}=\bigcup_{\gamma<\alpha} X_{\gamma}$.

Let X be a subgroup of G maximal with respect to the properties: $X \cap p^{\beta} G=\langle a\rangle, X^{\beta} \subset X$. We prove that $p^{\alpha} X=X \cap p^{\alpha} G$ for every $\alpha \leqslant \beta$. It is sufficient to show that if this equality holds for $\alpha-1$ then it holds for α. Let $x \in X \cap p^{\alpha} G$, i.e. $x=p g$, where $g \in p^{\alpha-1} G$. If $g \in X$ then $g \in X \cap p^{\alpha-1} G=p^{\alpha-1} X$ and $x \in p^{\alpha} X$. If $g \notin X$ then there is an element $y \in X$ and an integer z such that $z g+y \in p^{\beta} G \backslash\langle a\rangle$. Obviously $y \in p^{\alpha-1} G$ and $(z, p)=1$. Since $p z g+p y \in X \cap p^{\beta} G=\langle a\rangle$, $z x+p y=r a=r p a_{\alpha-1}$ and $z x=p\left(r a_{\alpha-1}-y\right)$. Now, $r a_{\alpha-1}-y \in X \cap$ $\cap p^{\alpha-1} G=p^{\alpha-1} X, z x \in p^{\alpha} X$ and $x \in p^{\alpha} X$.

Lemma 7. Let G be a p-group and β an ordinal. The following are equivalent:
(i) Every β-isotype subgroup of G is isotype in G.
(ii) Either $G=D \oplus B$, where D is divisible and $p^{\nu} B=0$ for some ordinal $\gamma<\beta$, or $p^{\beta} G$ is elementary or $p^{\beta-1} G=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

Proof. Assume (i). If $\beta=0$ then G is elementary by [4]. If β is a limit ordinal then write $\alpha=\beta$, otherwise write $\alpha=\beta-1$. Let $p^{\alpha} G=D \oplus R$, where D is divisible and R is reduced. If both D and R are nonzero, write $R=\langle a\rangle \oplus R^{\prime}$, where $o(a)=p^{k}, k \in \mathbb{N}$. The subgroup $p^{\alpha+k} G$ is not essential in $p^{\alpha} G, p^{\alpha+k+1} G \neq 0$ and lemma 5 implies a contradiction. If $p^{\alpha} G$ is reduced and $p^{\alpha} G=\langle a\rangle \oplus\langle b\rangle \oplus R^{\prime}$, where $o(a)=p^{k}, o(b)=p^{j}$ and $j-k \geqslant 2$, then $p^{\alpha+k} G$ is not essential in $p^{\alpha} G$, $p^{\alpha+k+1} G \neq 0$ and lemma 5 implies a contradiction. Consequently, either $p^{\alpha} G$ is nonzero divisible or $p^{\alpha} G=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$. If $\alpha=\beta-1$ then we are through, since if $p^{\alpha} G$ is divisible then $G=p^{\alpha} G \oplus B$ and obviously $p^{\alpha} B=0$. Hence suppose $\alpha=\beta$. Let $p^{\beta} G$ be nonzero divisible; write $G=p^{\beta} G \oplus B$. If $p^{\gamma} B \neq 0$ for every ordinal $\gamma<\beta$ and $0 \neq a \in p^{\beta} G[p]$ then there is a β-isotype subgroup X of G such that $p^{\beta} X=\langle a\rangle$ by lemma 6. Now, $p^{\beta+1} X=0 \neq\langle a\rangle=$ $=X \cap p^{\beta+1} G-a$ contradiction. Hence $p^{\nu} B=0$ for some ordinal $\gamma<\beta$. Let $p^{\beta} G=B_{e} \oplus B_{e+1}$ and suppose that $p^{\beta} G$ is not elementary.

If H is $p^{\beta} G$-high subgroup of G then $p^{\nu} H \neq 0$ for every ordinal $\gamma<\beta$, since β is a limit ordinal. Let $a \in p^{\beta+1} G[p]$ be a nonzero element. By lemma 6, there is a β-isotype subgroup X of G such that $p^{\beta} X=\langle a\rangle$. Now, $p^{\beta+1} X \neq X \cap p^{\beta+1} G$-a contradiction. Hence $p^{\beta} G$ is elementary.

Assume (ii). Let H be a β-isotype subgroup of G. If $p^{\beta-1} G=$ $=B_{e} \oplus B_{e+1}$ then

$$
p\left(p^{\beta-1} H\right)=p^{\beta} H=H \cap p^{\beta} G=p^{\beta-1} H \cap p\left(p^{\beta-1} G\right)
$$

hence $p^{\beta-1} H$ is neat in $p^{\beta-1} G$ and therefore $p^{\beta-1} H$ is pure in $p^{\beta-1} G$ by [9]. Consequently,

$$
p^{n}\left(p^{\beta-1} H\right)=p^{\beta-1} H \cap p^{n}\left(p^{\beta-1} G\right)=H \cap p^{n}\left(p^{\beta-1} G\right)
$$

for every natural number n and moreover, if $n \geqslant e+1$ then $p^{n}\left(p^{\beta-1} H\right)=0$. If $G=D \oplus B$, where D is divisible and $p^{\nu} B=0$ for some $\gamma<\beta$ then

$$
p^{\nu} H=H \cap p^{\nu} G=H \cap p^{\beta} G=p^{\beta} H
$$

If $p^{\beta} G$ is elementary then

$$
p^{\beta+1} H=H \cap p^{\beta+1} G=0
$$

In all cases, H is isotype in G.
Theorem 5. Let G be a group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. The following statements are equivalent:
(i) Every Γ-isotype subgroup of G is isotype in G.
(ii) For every $i \in \mathbb{N}$, either $G_{p_{i}}=D \oplus B$, where D is divisible and $p_{i}^{\gamma} B=0$ for some ordinal $\gamma<\alpha_{i}$, or $p_{i}^{\alpha_{i}} G$ is torsion and $p_{i}^{\alpha_{i}} G_{p_{i}}$ is elementary or $p_{i}^{\alpha_{i}} G$ is torsion and $p_{i}^{\alpha_{i}-1} G_{p_{i}}=B_{e} \oplus B_{e+1}$ for some $e \in \mathbb{N}$.

Proof. Assume (i). Every α_{i}-isotype subgroup of $G_{p_{i}}$ is isotype in $G_{p_{i}}$ and hence $G_{p_{i}}$ is as claimed in (ii) by lemma 7. Let $i \in \mathbb{N}$; write $\beta=\alpha_{i}$ and $p=p_{i}$. Suppose that $p^{\beta} G$ is not torsion. If $p^{\beta-1} G_{p}=$ $=B_{e} \oplus B_{e+1} \neq 0$ then $p^{\beta+e} G_{p}$ is not essential in $p^{\beta-1} G_{p}$ and $p^{\beta+e} G$ is not torsion. If $p^{\beta} G_{p}$ is nonzero elementary then $p^{\beta+1} G_{p}$ is not essential in $p^{\beta} G_{p}$ and $p^{\beta+1} G$ is not torsion. In these both cases, lemma 5 implies a contradiction.

Suppose that $p^{\beta} G$ is not torsion, $p^{\beta} G_{p}=0$ and $p^{\nu} G_{p} \neq 0$ for each ordinal $\gamma<\beta$. Let $a \in p^{\beta} G, o(a)=\infty$ and A be a $p^{\beta} G$-high subgroup of G containing G_{p}. Hence $p^{\nu} A_{p} \neq 0$ for each ordinal $\gamma<\beta$. By lemma 6, there is a subgroup X of G such that $p^{\nu} X=X \cap p^{\nu} G$ for every ordinal $\gamma \leqslant \beta$ and $p^{\beta} X=\langle p a\rangle$. Let H be a subgroup of G maximal with respect to the properties: $X \subset H, a \notin H$. By lemma 6 [1], H is q-absorbing in G for every $q \neq p$. We prove that $p^{\nu} H=H \cap p^{\nu} G$ for each ordinal $\gamma \leqslant \beta$. It is sufficient to show that if this equality holds for $\gamma-1<\beta$ then it holds also for γ. Let $h \in H \cap p^{\gamma} G$; there is $g \in p^{\gamma-1} G$ such that $h=p g$. Obviously $h \in p^{\gamma-1} H$. If $g \in H$ then $h \in p^{\nu} H$. If $g \notin H$ then $a \in\langle g, H\rangle$, i.e. $a=z g+h^{\prime}$, where $h^{\prime} \in H$ and z is an integer. Now, $(z, p)=1$ and $h^{\prime} \in H \cap p^{\gamma-1} G=p^{\gamma-1} H$. Further, $p a=z h+p h^{\prime} \in p^{\beta} X \subset p^{v} X$, there is $x^{\prime} \in p^{\gamma-1} X$ such that $z h+p h^{\prime}=p x^{\prime}$. Hence $z h=p\left(x^{\prime}-h^{\prime}\right)$, where $x^{\prime}-h^{\prime} \in p^{\gamma-1} H$, and therefore $z h \in p^{\gamma} H$. Now, $p h \in p^{\gamma} H, z h \in p^{\nu} H$ and $(p, z)=1$ imply $h \in p^{\nu} H$. Hence H is Γ-isotype in G. Finally, $p a \in H \cap p^{\beta+1} G \backslash p^{\beta+1} H$. For, if $p a=p y$, where $y \in p^{\beta} H$, then $a-y \in G_{p} \cap p^{\beta} G=0, a \in H$ -a contradiction. Consequently, H is not isotype in G.

Assume (ii). If H is a Γ-isotype subgroup of G then H_{t} is Γ-isotype in G_{t} and by lemma 1, each $H_{p_{i}}$ is α_{i}-isotype in $G_{p_{i}}$. By lemma 7, each $H_{p_{i}}$ is isotype in $G_{p_{i}}$ and by lemma $1, H_{t}$ is isotype in G_{t}.

Let $i \in \mathbb{N}$, write $\beta=\alpha_{i}$ and $p=p_{i}$. If $p^{\beta} G$ is torsion then

$$
p^{\nu} H=p^{\nu} H_{t}=H_{t} \cap p^{\nu} G_{t}=H \cap p^{\nu} G_{t}=H \cap p^{\nu} G
$$

for every $\gamma \geqslant \beta$. Suppose that $G_{p}=D \oplus B$, where D is divisible and $p^{\nu} B=0$ for some ordinal $\gamma<\beta$. Hence $p^{\nu} G_{p}$ and $p^{\nu} H_{p}$ are divisible. Write $p^{\nu} H=p^{\nu} H_{p} \oplus Y$. Since $p^{\nu} G_{p} \cap Y=0, p^{\nu} G=p^{\nu} G_{p} \oplus X$, where $Y \subset X$. We show that $p^{\varepsilon} Y=Y \cap p^{\varepsilon} X$ for each ordinal ε. It is sufficient to show that if this equality holds for ε then it holds also for $\varepsilon+1$. Let $y \in Y \cap p^{\varepsilon+1} X$; there is $x \in p^{\varepsilon} X$ such that $y=p x$. Now, $y \in p^{\gamma+1} G \cap H=p^{\gamma+1} H$, there is $h \in p^{\gamma} H$ such that $y=p h$. Write $h=h^{\prime}+y^{\prime}$, where $h^{\prime} \in p^{\nu} H_{p}$ and $y^{\prime} \in Y$. Since $y=p h^{\prime}+p y^{\prime}, p h^{\prime} \in$ $\in Y \cap p^{\gamma} H_{p}=0$. Hence $y=p y^{\prime}, x-y^{\prime} \in X_{p}=0, x \in Y \cap p^{\varepsilon} X=p^{\varepsilon} Y$ and therefore $y \in p^{\varepsilon+1} Y$. Finally,

$$
\begin{aligned}
& p^{\varepsilon}\left(p^{\nu} H\right)=p^{\nu} H_{p} \oplus p^{\varepsilon} Y=p^{\nu} H_{p} \oplus\left(Y \cap p^{\varepsilon} X\right)= \\
& \quad=p^{\nu} H \cap\left(p^{\nu} G_{p} \oplus p^{\varepsilon} X\right)=p^{\nu} H \cap p^{\varepsilon}\left(p^{\nu} G\right)=H \cap p^{\varepsilon}\left(p^{\nu} G\right)
\end{aligned}
$$

for each ordinal ε.

Theorem 6. Let G be a nonzero group and $\Gamma=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathscr{H}$. The following are equivalent:
(i) Every Γ-isotype subgroup of G is an absorbing subgroup of G.
(ii) Either G is torsion-free and $\alpha_{i}>0$ for each $i \in \mathbb{N}$ or G is cocyclic and if $\alpha_{i}=0$ for some $i \in \mathbb{N}$ then either $G_{p_{i}}=0$ or $G=Z\left(p_{i}\right)$.

Proof. Every Γ-isotype subgroup of G is absorbing in G iff every Γ-isotype subgroup of G is isotype in G and every isotype subgroup of G is absorbing in G. Now, theorem 5 and theorem 6 [1] imply the desired result.

REFERENCES

[1] J. Bečváǩ, Abelian groups in which every pure subgroup is an isotype subgroup, Rend. Sem. Math. Univ. Padova, 62 (1980), pp. 129-136.
[2] S. N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.
[3] L. Fuchs, Infinite abelian groups I, II, Academic Press, 1970, 1973.
[4] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem.
[5] J. M. Irwin - E. A. Walker, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460.
[6] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118.
[7] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75.
[8] R. C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160.
[9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164.
[10] K. M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27.
[11] K. M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, $A 31$ (1965), pp. 513-526.
[12] V. S. Rochlina, Ob e-čistote v abelevych gruppach, Sib. Mat. Ž., 11 (1970), pp. 161-167.
[13] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110.

Manoscritto pervenuto in redazione il 6 luglio 1979.

