Nous donnons un résultat de point fixe pour une correspondance non dilatante et asymptotiquement contractante. Nous présentons aussi un théorème de coincidence qui généralise un résultat classique de Nadler.
@article{RFM_2010__9__79_0, author = {Nachi, Khadra}, title = {Points fixes et points de co{\"\i}ncidence pour les multiapplications}, journal = {Femmes & math}, pages = {79--83}, publisher = {Association femmes et math\'ematiques}, volume = {9}, year = {2010}, language = {fr}, url = {http://www.numdam.org/item/RFM_2010__9__79_0/} }
Nachi, Khadra. Points fixes et points de coïncidence pour les multiapplications. Femmes & math, Forum 9 des Jeunes Mathématiciennes, Tome 9 (2010), pp. 79-83. http://www.numdam.org/item/RFM_2010__9__79_0/
[1] J.-P. Dedieu, Cône asymptote d’un ensemble non convexe. Application à l’optimisation, C. R. Acad. Sci. Paris, 287 (1977), 501-503. | MR | Zbl
[2] W.A. Kirk, The fixed point property and mappings which are eventually nonexpansive, in Kartsatos, Athanassios G. (ed.), Theory and applications of nonlinear operators of accretive and monotone type, Lect. Notes Pure Appl. Math. 178, Marcel Dekker, New York (1996), 141-147. | MR | Zbl
[3] D. T. Luc, Recession maps and applications, Optimization 27 (1993), 1-15. | MR | Zbl
[4] D. T. Luc, Recessively compact sets : properties and uses, Set-Valued Anal. 10 (2002), 15-35. | MR | Zbl
[5] D. T. Luc and J.-P. Penot, Convergence of asymptotic directions, Trans. Amer. Math. Soc. 353 (2001), 4095-4121. | MR | Zbl
[6] S. B. Nadler, Multivalued contraction mappings, Pacific J. Maths. 30 (1969), 475-488. | MR | Zbl
[7] H. K. Pathak, B.E. Rhoades and M. S. Khan, Common fixed point theorem for asymptotically contractante mappings without compactness, Preprint (2006). | MR | Zbl
[8] J.-P. Penot, A fixed point theorem for asymptotically contracting mappings, Proc. Amer. Math. Soc. 131, N 8, (2003), 2371-2377. | MR | Zbl
[9] J.-P. Penot, A metric approach to asymptotic analysis, Bulletin des Sciences Math. 127 (2003), 815-833. | MR | Zbl
[10] J.-P. Penot and C. Zălinescu, Continuity of usual operations and variational convergences, Preprint, Univ. of Pau, 2000 and 2001. | MR | Zbl
[11] C. Zălinescu, Recession cones and asymptotically compact sets, J. Optim. Theory Appl., 77 (1993), 209-220. | MR | Zbl