À propos de mathématiques
Regular flows of viscoelastic fluids and the incompressible limit
Femmes & math, Forum 9 des Jeunes Mathématiciennes, Tome 9 (2010), pp. 107-110.

We consider compressible viscoelastic fluids obeying the Oldroyd constitutive law. Local existence and uniqueness of flows are proven by a classical fixed point argument. Some global properties of the solutions are also derived. In particular, we obtain some a priori estimates which are uniform in the Mach number and prove global existence of weakly compressible fluid flows. We show that weakly compressible flows with well-prepared initial data converge to incompressible ones when the Mach number goes to zero.

Publié le :
Salloum, Zaynab 1, 2

1 Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France, and
2 Université Libanaise, Faculté des Sciences, Beyrouth, Liban
@article{RFM_2010__9__107_0,
     author = {Salloum, Zaynab},
     title = {Regular flows of viscoelastic fluids and the incompressible limit},
     journal = {Femmes & math},
     pages = {107--110},
     publisher = {Association femmes et math\'ematiques},
     volume = {9},
     year = {2010},
     language = {en},
     url = {http://www.numdam.org/item/RFM_2010__9__107_0/}
}
TY  - JOUR
AU  - Salloum, Zaynab
TI  - Regular flows of viscoelastic fluids and the incompressible limit
JO  - Femmes & math
PY  - 2010
SP  - 107
EP  - 110
VL  - 9
PB  - Association femmes et mathématiques
UR  - http://www.numdam.org/item/RFM_2010__9__107_0/
LA  - en
ID  - RFM_2010__9__107_0
ER  - 
%0 Journal Article
%A Salloum, Zaynab
%T Regular flows of viscoelastic fluids and the incompressible limit
%J Femmes & math
%D 2010
%P 107-110
%V 9
%I Association femmes et mathématiques
%U http://www.numdam.org/item/RFM_2010__9__107_0/
%G en
%F RFM_2010__9__107_0
Salloum, Zaynab. Regular flows of viscoelastic fluids and the incompressible limit. Femmes & math, Forum 9 des Jeunes Mathématiciennes, Tome 9 (2010), pp. 107-110. http://www.numdam.org/item/RFM_2010__9__107_0/

[1] H. Bessaih, Limite de modèles de fluides compressibles, Port. Math., 52 (4) (1995), 441-463. | MR | Zbl

[2] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder, Discrete Contin. Dyn. Syst., 11(1) (2004), 47-82. | MR | Zbl

[3] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Scient. Éc. Norm. Sup., 4e série 35 (2002), 27-75. | Numdam | MR | Zbl

[4] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, Proc. Roy. Soc. Lond. A, 455 (1999), 2271-2279. | MR | Zbl

[5] C. Guillopé, Z. Salloum and R. Talhouk, Regular flows of weakly compressible viscoelastic fluids and the incompressible limit, Discr. Cont. Dyn. Systems - B, 24 (3) (2010). | MR

[6] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651. | MR | Zbl

[7] Z. Lei, Global Existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math., 27B (5) (2006), 565-580. | MR | Zbl

[8] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (6) (1998), 585-627. | MR | Zbl

[9] Z. Salloum, “Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers", Doctorat de l’Université Paris-Est, 2008.