We consider compressible viscoelastic fluids obeying the Oldroyd constitutive law. Local existence and uniqueness of flows are proven by a classical fixed point argument. Some global properties of the solutions are also derived. In particular, we obtain some a priori estimates which are uniform in the Mach number and prove global existence of weakly compressible fluid flows. We show that weakly compressible flows with well-prepared initial data converge to incompressible ones when the Mach number goes to zero.
@article{RFM_2010__9__107_0, author = {Salloum, Zaynab}, title = {Regular flows of viscoelastic fluids and the incompressible limit}, journal = {Femmes & math}, pages = {107--110}, publisher = {Association femmes et math\'ematiques}, volume = {9}, year = {2010}, language = {en}, url = {http://www.numdam.org/item/RFM_2010__9__107_0/} }
Salloum, Zaynab. Regular flows of viscoelastic fluids and the incompressible limit. Femmes & math, Forum 9 des Jeunes Mathématiciennes, Tome 9 (2010), pp. 107-110. http://www.numdam.org/item/RFM_2010__9__107_0/
[1] H. Bessaih, Limite de modèles de fluides compressibles, Port. Math., 52 (4) (1995), 441-463. | MR | Zbl
[2] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder, Discrete Contin. Dyn. Syst., 11(1) (2004), 47-82. | MR | Zbl
[3] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Scient. Éc. Norm. Sup., série 35 (2002), 27-75. | Numdam | MR | Zbl
[4] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, Proc. Roy. Soc. Lond. A, 455 (1999), 2271-2279. | MR | Zbl
[5] C. Guillopé, Z. Salloum and R. Talhouk, Regular flows of weakly compressible viscoelastic fluids and the incompressible limit, Discr. Cont. Dyn. Systems - B, 24 (3) (2010). | MR
[6] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651. | MR | Zbl
[7] Z. Lei, Global Existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math., 27B (5) (2006), 565-580. | MR | Zbl
[8] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (6) (1998), 585-627. | MR | Zbl
[9] Z. Salloum, “Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers", Doctorat de l’Université Paris-Est, 2008.