REGULAR FLOWS OF VISCOELASTIC FLUIDS AND THE INCOMPRESSIBLE LIMIT

Zaynab Salloum

Résumé. — We consider compressible viscoelastic fluids obeying the Oldroyd constitutive law. Local existence and uniqueness of flows are proven by a classical fixed point argument. Some global properties of the solutions are also derived. In particular, we obtain some a priori estimates which are uniform in the Mach number and prove global existence of weakly compressible fluid flows. We show that weakly compressible flows with *well-prepared* initial data converge to incompressible ones when the Mach number goes to zero.

1. Introduction

The mathematical analysis of flows at vanishing Mach number begins with the works of Klainerman and Majda [6]. The incompressible limit of the isentropic Navier-Stokes equations has been justified for weak solutions by Desjardins and Grenier [4], Lions and Masmoudi [8], Bresch, Desjardins and Gérard-Varet [2]. For viscous gas, global well-posedness in critical spaces has been established by Danchin [3]. In the case of well-prepared initial data and regular solutions, Bessaih [1] has studied the compressible Navier-Stokes limit. Lei, in [7], has proven the local and global existence of classical solutions for an Olydroyd-B system in a torus when the initial data are sufficiently small.

In this presentation¹, we show the global existence of solutions for weakly compressible viscoelastic fluid flows in the case of the Oldroyd-B model in a regular bounded domain in \mathbb{R}^3 . We also study the convergence of the weakly compressible model to the incompressible one, for *well-prepared* initial data, when the Mach number tends to zero.

2. The Modeling

2.1. Unsteady Flows of Compressible Viscoelastic Fluids. — Consider unsteady flows of viscoelastic fluids in a bounded domain Ω^* of \mathbb{R}^3 with a regular boundary Γ^* . The system, obtained from the laws of conservation of momentum, and of mass, and from the constitutive equation of the fluid, reads as follows (see for instance [9]) :

¹based on a study completed in collaboration with C. GUILLOPÉ and R. TALHOUK [5].

$$\begin{split} & \text{in } Q_{T^*}^* = (0,T^*) \times \Omega^*, \\ & (1) \\ & \left\{ \begin{array}{l} \rho^* \left(\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* \right) &= \rho^* \mathbf{f}^* + \eta_s (\Delta^* \mathbf{u}^* + \nabla^* \operatorname{div}^* \mathbf{u}^*) - \nabla^* p^* + \mathbf{div}^* \tau^*, \\ & \frac{\partial \rho^*}{\partial t^*} + \operatorname{div}^* (\rho^* \mathbf{u}^*) &= 0, \\ & \tau^* + \lambda \frac{\mathcal{D}_a \tau^*}{\mathcal{D} t^*} &= 2\eta_e \mathbf{D}^* [\mathbf{u}^*]. \end{split} \right. \end{split}$$

The *-variables are the dimensional ones in the domain of the flow Ω^* , and $T^* > 0$ is a dimensional time. The unknowns are the velocities \mathbf{u}^* , the density ρ^* , the pressure p^* , and the symmetric tensor of constraints τ^* . $\eta = \eta_s + \eta_e$ is the total viscosity of the fluid and $\lambda > 0$ is a relaxation time. The objective derivative of the tensor τ^* is given by $\frac{\mathcal{D}_{\alpha}\tau^*}{\mathcal{D}t^*} = \left(\frac{\partial}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*)\right)\tau^* + \tau^*\mathbf{W}^* - \mathbf{W}^*\tau^* - \mathbf{a}(\mathbf{D}^*\tau^* + \tau^*\mathbf{D}^*)$, where $\mathbf{W}^* = \frac{1}{2}(\nabla^*\mathbf{u}^* - \nabla^{*^T}\mathbf{u}^*)$ and $\mathbf{D}^* = \mathbf{D}^*[\mathbf{u}^*] = \frac{1}{2}(\nabla^*\mathbf{u}^* + \nabla^{*^T}\mathbf{u}^*)$ are, respectively, the rate of rotation and the rate of deformation tensors. \mathbf{a} is a real parameter in [-1, 1].

2.2. Well-Prepared Initial Conditions. — We first define the Mach number ε as being the ratio of the typical velocity of the fluid U_0 to the speed of sound $\left(\frac{dp^*}{d\rho^*}(\overline{\rho}_0^*)\right)^{1/2}$ in the same fluid at the same state. We divide the density $\rho^* = \rho^{*\varepsilon}$ into two parts : a *constant* one $\overline{\rho}_0^*$, independent of the Mach number ε , and a remainder, which is small for small ε 's, say $\rho^{*\varepsilon} = \overline{\rho}_0^* + \varepsilon^2 \sigma^{*\varepsilon}$. We also suppose that the initial conditions $\rho_0^{*\varepsilon}$, $\mathbf{u}_0^{*\varepsilon}$ and $\tau_0^{*\varepsilon}$ are *well-prepared*, which means that they take a similar form, say $\rho_0^{*\varepsilon} = \overline{\rho}_0^* + \varepsilon^2 \sigma_0^{*\varepsilon}$, $\mathbf{u}_0^{*\varepsilon} = \mathbf{v}_0^* + \mathbf{v}_0^{*\varepsilon}$, with div $\mathbf{v}_0^* = 0$, $\tau_0^{*\varepsilon} = \mathbf{S}_0^* + \mathbf{S}_0^{*\varepsilon}$, where \mathbf{v}_0^* and \mathbf{S}_0^* are, respectively, a vector and a symmetric tensor, both independent of ε . Assuming that $p^* = p^*(\rho^*)$ is regular, say class C^3 at least, we introduce the function w^* defined by $w^*(\sigma^*) = \frac{dp^*}{d\rho^*}(\overline{\rho}_0^* + \varepsilon^2 \sigma^*) - \frac{dp^*}{d\rho^*}(\overline{\rho}_0^*)$. System (1) can be written as follows : in Q_{T*}^* ,

(2)
$$\begin{cases} (\overline{\rho}_{0}^{*} + \varepsilon^{2}\sigma^{*}) \left(\frac{\partial \mathbf{u}^{*}}{\partial t^{*}} + (\mathbf{u}^{*} \cdot \nabla^{*})\mathbf{u}^{*} \right) + (U_{0})^{2}\nabla^{*}\sigma^{*} = (\overline{\rho}_{0}^{*} + \varepsilon^{2}\sigma^{*})\mathbf{f}^{*} + \mathbf{div}^{*}\tau^{*} \\ + \eta_{s}(\Delta^{*}\mathbf{u}^{*} + \nabla^{*}\operatorname{div}^{*}\mathbf{u}^{*}) - \varepsilon^{2}w^{*}(\sigma^{*})\nabla^{*}\sigma^{*}, \\ \varepsilon^{2}\frac{\partial\sigma^{*}}{\partial t^{*}} + \overline{\rho}_{0}^{*}\operatorname{div}^{*}\mathbf{u}^{*} + \varepsilon^{2}\operatorname{div}^{*}(\sigma^{*}\mathbf{u}^{*}) = 0, \\ \tau^{*} + \lambda \frac{\mathcal{D}_{\alpha}\tau^{*}}{\mathcal{D}t^{*}} = 2\eta_{e}\mathbf{D}^{*}[\mathbf{u}^{*}]. \end{cases}$$

2.3. Dimensionless Variables. — We introduce dimensionless variables and three non-dimensional numbers : a number α similar to the Reynolds number for incompressible flows, the Weissenberg number We, and a retardation number ω related to the viscosities of the fluid, precisely $\alpha = \frac{\overline{\rho}_0^* U_0 L_0}{\eta}$, $We = \frac{\lambda U_0}{L_0}$, $\omega = 1 - \frac{\eta_s}{\eta}$. We also define the non-dimensional function $w(\sigma) = \alpha \left\{ \frac{dp}{d\rho} \left(\alpha + \varepsilon^2 \sigma \right) - \frac{dp}{d\rho} \left(\alpha \right) \right\}$. Using the

notation $\mathbf{u}' = \frac{\partial \mathbf{u}}{\partial t}$, $\sigma' = \frac{\partial \sigma}{\partial t}$ and $\tau' = \frac{\partial \tau}{\partial t}$, as well as $A = -(\Delta + \nabla div)$, we may rewrite System (2) as follows : in Q_T ,

(3)
$$\begin{cases} \alpha \Big(\mathbf{u}' + (\mathbf{u} \cdot \nabla) \mathbf{u} \Big) + (1 - \omega) A \mathbf{u} + \nabla \sigma &= \mathbf{F}(\mathbf{u}, \sigma, \tau) + \mathbf{div} \tau, \\ \sigma' + (\mathbf{u} \cdot \nabla) \sigma + \sigma \mathrm{div} \, \mathbf{u} &= -\varepsilon^2 \alpha \mathrm{div} \, \mathbf{u}, \\ \tau + \mathrm{We} \Big(\tau' + (\mathbf{u} \cdot \nabla) \tau + \mathbf{g}(\nabla \mathbf{u}, \tau) \Big) &= 2\omega \mathbf{D}[\mathbf{u}], \end{cases}$$

with $\mathbf{F}(\mathbf{u}, \sigma, \tau) = \alpha \mathbf{f} + \frac{(1-\omega)\epsilon^2 \sigma}{\alpha+\epsilon^2 \sigma} A \mathbf{u} + \frac{\epsilon^2 (\sigma-w(\sigma))}{\alpha+\epsilon^2 \sigma} \nabla \sigma - \frac{\epsilon^2 \sigma}{\alpha+\epsilon^2 \sigma} \mathbf{div} \tau$. System (3) is completed by a homogeneous condition on the boundary, $\mathbf{u} = 0$ on $\Sigma_T = (0, T) \times \Gamma$, and by three initial conditions, $\mathbf{u}(0) = \mathbf{u}_0$, $\sigma(0) = \sigma_0$, $\tau(0) = \tau_0$ in Ω .

3. The Main Results

We assume that the data \mathbf{u}_0, σ_0 and τ_0 are regular enough and satisfy

$$\mathfrak{m} \leq \alpha + \varepsilon^2 \sigma_0 \leq \mathfrak{M}, \quad \int_{\Omega} \sigma_0 \ \mathrm{d} x = 0,$$

for some given constants $\mathfrak{m} > 0$ and \mathfrak{M} . Moreover the function $p = p(\rho)$ satisfies the condition $\sup_{[\frac{\alpha}{4},3\alpha]}(|p''| + |p'''|) \leq \frac{C}{\epsilon^2}$, for some constant C independent of ϵ .

Theorem 3.1. — (Existence and uniqueness of a global solution) Assume that $\Omega \subset \mathbb{R}^3$ is a domain of class C^4 , $\mathbf{f} \in L^{\infty}(\mathbb{R}_+; \mathbf{H}^1(\Omega))$, and $\mathbf{f}' \in L^{\infty}(\mathbb{R}_+; \mathbf{L}^2(\Omega))$. There exist three positive constants \mathfrak{b}_1 , \mathfrak{b}_2 and ω_0 ($0 < \omega_0 < 1$), independent of ε , such that if $0 < \omega \leq \omega_0$, $|\mathbf{u}_0|_2^2 + \varepsilon^2 |\sigma_0|_2^2 + |\tau_0|_2^2 \leq \mathfrak{b}_1$, and $[\mathbf{f}]_{\infty,1,\infty}^2 + [\mathbf{f}']_{\infty,0,\infty}^2 \leq \mathfrak{b}_2$, then System (3) admits a unique solution $(\mathbf{u}, \sigma, \tau)$, satisfying

$$\begin{split} \mathbf{u} &\in \mathrm{L}^{2}_{\mathrm{loc}}(\mathbb{R}_{+};\mathbf{H}^{3}(\Omega)) \cap \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{H}^{2}(\Omega)), \ \mathbf{u}' \in \mathrm{L}^{2}_{\mathrm{loc}}(\mathbb{R}_{+};\mathbf{H}^{1}(\Omega)) \cap \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{L}^{2}(\Omega)), \\ \sigma &\in \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{H}^{2}(\Omega)), \ \sigma' \in \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{H}^{1}(\Omega)), \ \tau \in \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{H}^{2}(\Omega)), \ \tau' \in \mathcal{C}_{\mathrm{b}}(\mathbb{R}_{+};\mathbf{H}^{1}(\Omega)), \end{split}$$

and

$$rac{lpha}{2} \leq lpha + arepsilon^2 \sigma \leq rac{3 lpha}{2} \,, \quad ext{in } \overline{\Omega} imes \mathbb{R}_+.$$

Moreover, for all $t \in \mathbb{R}_+$ *,*

$$|\mathbf{u}(t)|_{1}^{2} + \epsilon^{2} |\mathbf{u}(t)|_{2}^{2} + \epsilon^{2} |\sigma(t)|_{2}^{2} + |\tau(t)|_{2}^{2} \le \mathfrak{b}_{3}, \ |\mathbf{u}'(t)|^{2} + \epsilon^{2} |\sigma'(t)|^{2} + |\tau'(t)|^{2} \le \mathfrak{b}_{4},$$

where b_3 and b_4 are some positive constants independent of ε .

If, in addition, $\mathbf{f} \in L^2(\mathbb{R}_+; \mathbf{H}^1(\Omega))$, and $\mathbf{f}' \in L^2(\mathbb{R}_+; \mathbf{L}^2(\Omega))$, then the solution $(\mathbf{u}, \sigma, \tau)$ of (3) also satisfies

$$\mathbf{u} \in L^2(\mathbb{R}_+;\mathbf{H}^3(\Omega)), \ \mathbf{u}' \in L^2(\mathbb{R}_+;\mathbf{H}^1(\Omega)),$$

$$\sigma \in L^2(\mathbb{R}_+; H^2(\Omega)), \ \sigma' \in L^2(\mathbb{R}_+; H^1(\Omega)), \ \tau \in L^2(\mathbb{R}_+; H^2(\Omega)), \ \tau' \in L^2(\mathbb{R}_+; H^1(\Omega)).$$

ZAYNAB SALLOUM

The second result concerns the convergence of weakly compressible flows towards incompressible ones when ε tends to zero. We now make the ε -dependence explicit, that is denote the solution $(\mathbf{u}, \sigma, \tau)$ of Problem (3) by $(\mathbf{u}^{\varepsilon}, \sigma^{\varepsilon}, \tau^{\varepsilon})$. Let $(\mathbf{v}, \pi, \mathbf{S})$ be the solution of the incompressible model, where $\rho \equiv \alpha$,

(4)
$$\begin{cases} \alpha \left(\mathbf{v}' + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) - (1 - \omega) \Delta \mathbf{v} + \nabla \pi = \alpha \mathbf{f} + \mathbf{div} \mathbf{S}, \\ \mathrm{div} \, \mathbf{v} = 0, & \mathrm{in} \, \mathbb{R}_+ \times \Omega, \\ \mathbf{S} + \mathrm{We} \left(\mathbf{S}' + (\mathbf{v} \cdot \nabla) \mathbf{S} + \mathbf{g} (\nabla \mathbf{v}, \mathbf{S}) \right) = 2\omega \mathbf{D}[\mathbf{v}], \\ \mathbf{v} = 0, & \mathrm{on} \, \mathbb{R}_+ \times \Gamma, \\ \mathbf{v}(0) = \mathbf{v}_0, & \mathrm{in} \, \Omega, \\ \mathbf{S}(0) = \mathbf{S}_0, & \mathrm{in} \, \Omega. \end{cases}$$

Theorem 3.2. — Let $0 \leq \mathfrak{r} < 1$. We suppose that $(\mathbf{u}_0^{\varepsilon}, \tau_0^{\varepsilon})$ converges towards $(\mathbf{v}_0, \mathbf{S}_0)$ in $\mathbf{H}^{1+\mathfrak{r}}(\Omega) \times \mathbf{H}^{1+\mathfrak{r}}(\Omega)$, as ε tends to zero. Under the assumptions of Theorems 3.1, the solution of Problem (3) tends towards the solution of Problem (4) as ε tend to zero. More precisely, for all $\delta > 0$, there exists $\varepsilon_0 > 0$ such that for all ε in $(0, \varepsilon_0]$ and T > 0,

$$\left|\mathbf{u}^{\varepsilon}-\mathbf{v}\right|_{\mathcal{C}([0,T];\mathbf{H}^{\mathfrak{r}}(\Omega))}+\left\|\varepsilon^{2}\sigma^{\varepsilon}\right\|_{\mathcal{C}([0,T];\mathbf{H}^{1+\mathfrak{r}}(\Omega))}+\left|\tau^{\varepsilon}-\mathbf{S}\right|_{\mathcal{C}([0,T];\mathbf{H}^{1+\mathfrak{r}}(\Omega))}<\delta.$$

Références

- [1] H. Bessaih, Limite de modèles de fluides compressibles, Port. Math., 52 (4) (1995), 441-463.
- [2] D. Bresch, B. Desjardins and D. Gérard-Varet, *Rotating fluids in a cylinder*, Discrete Contin. Dyn. Syst., **11**(1) (2004), 47-82.
- [3] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Scient. Éc. Norm. Sup., 4^e série 35 (2002), 27-75.
- [4] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, Proc. Roy. Soc. Lond. A, 455 (1999), 2271-2279.
- [5] C. Guillopé, Z. Salloum and R. Talhouk, Regular flows of weakly compressible viscoelastic fluids and the incompressible limit, Discr. Cont. Dyn. Systems - B, 24 (3) (2010).
- [6] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651.
- [7] Z. Lei, Global Existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chin. Ann. Math., 27B (5) (2006), 565-580.
- [8] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (6) (1998), 585-627.
- [9] Z. Salloum, "Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers", Doctorat de l'Université Paris-Est, 2008.

Zaynab Salloum

Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, UMR CNRS 8050, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France, and.

Université Libanaise, Faculté des Sciences, Beyrouth, Liban, .

E-mail: salloum@u-pec.fr; salloum@ul.edu.lb