@article{RFM_2000__4_S1_10_0, author = {Belopolskaya, Yana}, title = {Diffusion processes and nonlinear parabolic equations}, journal = {Femmes & math}, pages = {10--14}, publisher = {Association femmes et math\'ematiques}, year = {2000}, language = {en}, url = {http://www.numdam.org/item/RFM_2000__4_S1_10_0/} }
Belopolskaya, Yana. Diffusion processes and nonlinear parabolic equations. Femmes & math, Forums 3 et 4 des Jeunes Mathématiciennes (2000), pp. 10-14. http://www.numdam.org/item/RFM_2000__4_S1_10_0/
[1] H. McKean, A class of Markov processes associated with nonlinear parabolic equations. Proc.Nat. Acad. Sci. USA 59, 6 (1966), 1907-1911 . | Zbl
[2] M. Freidlin, Quasilinear parabolic equations and measures in function space. Funct. Anal. Appl. V. 1, N. 3 (1967), 237-240. | Zbl
[3] Ya. Belopolskaya, Yu. Dalecky, Investigation of a Cauchy problem for quasi-linear parabolic system with finite and infinite dimensional arguments with help of Markov random processes. Izv. Vysh. Uchebn.Zaved. Math 2, 6 (1978), 5-17.
[4] Ya. Belopolskaya, Yu. Dalecky, Markov processes associated with nonlinear parabolic systems. DAN AN SSSR V. 250, 1 (1980), 521-524.
[5] Ya. Belopolskaya, Probabilistic approach to solution of nonlinear parabolic equations. Problems of mathematical analysis V. 13 (1992), 156-170.
[6] Ya. Belopolskaya, Yu. Dalecky, Stochastic Equations and Differential Geometry. Kluwer Acad. Publ. 1990, p. 260. | Zbl
[7] N. Krylov, Nonlinear elliptic and parabolic equations of second order. Nauka, Moscow 1985, p. 376. Engl. transi. by Reidel, Dordrecht 1987. | Zbl
[8] Ya. Belopolskaya, A priori estimates for solutions to first initial-boundary value problem for systems of fully nonlinear PDE. Ukr. Math J. 49, N. 3 (1997), 338-363. | Zbl