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From the very first steps of the development of the diffusion process theory its
deep connections with PDE theory were acknowledged and fruitfully used. At the
beginning PDE results were used to study properties of transition probabilities
of diffusion processes. Later the results of stochastic differential equation (SDE)
theory come to be very effective in deriving results in PDE. Actually SDE methods
allow to derive a priori estimates of PDE solutions with constants independent of
the dimension of the phase space and hence show the way to deal with infinite
dimensional PDEs. In addition they were less sensitive to the degeneration of
principal terms in PDE equations then classical methods of investigation.

Starting from the works by H. McKean [1] and M. Freidlin [2] it was revea-
led that probabilistic approach could be applied to investigation of a large class
of quasilinear elliptic and parabolic equations as well. Later this approach was
applied to study fully nonlinear PDE and systems of such equations (see [4]-[7]).

To give a more detailed description of the probabilistic approach let us intro-
duce some notation. Let (Ω,F , P ) denote a complete probability space, H+ ⊂
H ⊂ H− be a Gelfand triple of Hilbert spaces , dimH = n ≤ ∞. Denote
by w(t) ∈ H− a Wiener process defined on Ω and associated with this triple,
a(t, x) ∈ H,A(t, x) ∈ L12(H), x ∈ H, t ∈ [0, T ] where L12(H) is a space of Hilbert-

Schmidt operators with the norm σ(A) = (Tr[A∗A])
1
2 .

The connection between PDE and SDE theories is based on the fact that the
transition probability P (s, x, t, dy) = P (ξ(t) ∈ dy|ξ(s) = x), 0 ≤ s ≤ t ≤ T of the
Markov process ξ(t) ∈ H which solves

dξ(t) = a(t, ξ(t))dt+ A(t, ξ(t))dw, ξ(s) = x (1)

gives rise to an evolution family V (t, s)f(x) = Ef(ξs,x(t)) where ξs,x(t) is the
solution to (1). The family V (t, s) acts in the space B(H) of bounded measurable
functions on H and the restriction of its generator of to the space C2(H) of twice
differentiable functions has the form

A(s)f(x) = 1

2
Trf ′′(A(s, x), A(s, x)) + (f ′, a(s, x)).

Hence u(s, x) = Ef(ξs,x(t)) solves the Cauchy problem

∂u

∂s
+A(s) = 0, u(t, x) = f(x).

Here f ′ = ∂f
∂x
,Trf ′′(A,A) =

∑n
i,j,k=1 f

′′
xixj

Ak
iA

k
j .
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Following this line consider a stochastic equation

dξ = a(t, ξ(t), u(t, ξ(t)))dt+ A(t, ξ(t), u(t, ξ(t)))dw, ξ(s) = x (2)

where u(t, x) is an unknown function and choose

u(s, x) = Ef(ξs,x(t)) (3)

This idea which is due to McKean [1] and Freidlin [2] was developed later in [3],
[4]. Under certain assumptions on a, A and f (see [3]) we can prove the existence
and uniqueness of the solution to (2),(3) and check that u(s, x) given by (3) is a
(generally speaking) generalized solution of the Cauchy problem

∂u

∂s
+

1

2
Tru′′(A(s, x, u), A(s, x, u)) + (a(s, x, u), u′) = 0, u(t, x) = f(x), t ≥ s. (4)

The next extension of the theory is connected with the so called multiplicative
operator functionals of Markov processes and allows to apply the above results to
systems of PDE and state smooth property of u(s, x).

Let H1 be another Hilbert space, dimH1 = m ≤ ∞, c(s, x) ∈ L(H1), C(s, x) ∈
L12(H,L(H1)) where L(H1) is a space of bounded linear operators in H1. Consider
a system

dξ = a(ξ(θ), v(t− θ, ξ(θ)))dθ + A(ξ(θ), v(t− θ, x(θ)))dw, (5)

dη = c(ξ(θ), v(t− θ, ξ(θ)))η(θ)dθ + C(ξ(θ), v(t− θ, x(θ)))(η(θ), dw), (6)

(h, v(t, x)) = E(η(t), f(ξ(t))), ξ(0) = x ∈ H, η(0) = h ∈ H1. (7)

Systems of this type were studied in [3],[4]. In particular there were stated condi-
tions on coefficients and initial data to ensure the existence and uniqueness of
solution to (5)-(7) and to prove that v(t, x) determined by (7) is a generalized
solution to

∂vl
∂t

=
1

2
Trv′′l (A,A) + (v′l, a) +

n∑

k=1

m∑

q=1

Ck
lq(v

′
q, A

k) +
m∑

q=1

clqvq, vl(0, x) = f1(x). (8)

Notice that in general case we can prove only the existence of a local (in time)
solution and state some conditions leading to the existence of a global solution.

Further development of the theory is connected with applying the whole ma-
chinery to the fully nonlinear parabolic equations and systems as well as treating
all the problems in the framework of smooth manifolds and fibre bundles rather
than linear spaces.

Actually the probabilistic approach described above could be directly applied
to the investigation of the solution to the Cauchy problem for nonlinear equations
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and systems. One more extension allows to apply the above approach to inves-
tigation of the first initial boundary value problem in a smooth bounded region
G ⊂ Rn for PDEs and systems [5],[6].

To deal with Dirichlet boundary conditions in elliptic case and first initial
boundary value problem in parabolic case one could reduce the problem under
investigation to the auxiliary Cauchy problem. This reduction is based on an
observation due to Krylov [7] which allows to reduce the first initial boundary-
value problem for a parabolic equation in a domain G ⊂ Rn with a smooth
boundary ∂G = {x ∈ Rn : ψ(x) = 0} to an auxiliary Cauchy problem on a surface
G ⊂ Rn+4 determined by

U = {y = (x, ŷ) ∈ Rn+4 : ψ(x) =
n+4∑

i=n+1

ŷ2i > 0}.

To explain how one could apply SDE theory to construct a solution to a Cauchy
problem for a fully nonlinear PDE consider the problem

∂u

∂t
+ Φ(t, x, u, u′, u′′) = 0, u(0, x) = f(x) (9)

and reduce it to a system of quasilinear parabolic equations with respect to a
function v = (v1, v2, v3, v4) where v1 = u, v2 = u′, v3 = u′′, v4 = u′′′. To this end let
us differentiate (9) with respect to x variable and notice that the resulting system
could be rewritten in the form (8) under some assumptions on the data in (9).

To be more precise assume that Φ(t, x, u, p, r) defined on [0, T ]×Rn×R1×Rn×
Rn2

is at least three times continuously differentiable with respect to (x, u, p, r).
Let in addition Φ′

r, be positive for all values of its arguments and Φ′
r = A ∗ A.

Differentiating (9) three times one could see that the resulting system of equations
could be rewritten in the form (8) where a(t, x, v) denotes a factor of diagonal first
order terms in it , B(t, x, v) is a factor of nondiagonal first order terms and c(t, x, v)
is a factor of zero order terms. Let in addition k(t, x) correspond to terms of the
form Φ′

x(t, x, 0, 0, 0), ...,Φ
′′′(t, x, 0, 0, 0).

Finally suppose that there exist positive constants C,C1, C2, ρ1, positive boun-
ded K and a constant ρ0 such that

∥a(t, x, v)−a(t, x1, v1)∥2+σ2(A(t, x, v)−A(t, x1, v1)) ≤ C[∥x−x1∥2+K(v, v1)∥v−v1∥2],

∥a(t, x1, v)∥2 + σ2(A(t, x, v)) ≤ C1[1 + ∥x∥2 + ∥v∥p],
σ2(B(t, x, v)h) ≤ C2[1 + ∥v∥p], h ∈ Rα, α = n+ n2 + n3 + 1,

(c(t, x, v)h, h) ≤ [ρ0 + ρ1∥v∥p]∥h∥2,
We say C.1 is valid if all above assumptions are satisfied.

Theorem 1. Assume that C.1 is valid. Then there exists a unique (local in time)
solution to Cauchy problem (9). If in addition ρ0is negative and have large enough
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absolute value then there exists a unique global solution to (9). Moreover there
exists a Markov process ξ(t) ∈ Rn and a multiplicative functional of ξ(t) generated
by the process η(t) ∈ Rα such that the solution to (9) admits the probabilistic
representation in terms of ξ(t) and η(t).

In fact for a number of interesting fully nonlinear equations and systems the
assumption that Φ′

r is nonnegative for all values of its arguments is too strong and
should be modified. Eventually it is reasonable to demand Φ′

r to be nonegative at
least on solutions of the problem or on some more or less good subsets of the space
of functions valued in Rn×R1×Rn×Rn2

. In this case the probabilistic approach
could be used to derive the a priori estimates necessary to allow the application
of a fixed point theorem. The corresponding results could be seen in the series
of works by N.Krylov devoted to Bellman equation (see [7] and references there).
Systems of fully nonlinear parabolic and elliptic equations on this way were studied
in [8] .
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