@article{RFM_1999__3_S1_63_0, author = {Pichon, Anne}, title = {Singularit\'es normales d{\textquoteright}\'equations $z^k-f(x,y)=0$}, journal = {Femmes & math}, pages = {63--65}, publisher = {Association femmes et math\'ematiques}, year = {1999}, language = {fr}, url = {http://www.numdam.org/item/RFM_1999__3_S1_63_0/} }
Pichon, Anne. Singularités normales d’équations $z^k-f(x,y)=0$. Femmes & math, Forum 2 des Jeunes Mathématiciennes (1999), pp. 63-65. http://www.numdam.org/item/RFM_1999__3_S1_63_0/
[1] S. Abhyankar, On a question of Mumford, American Jounal of Math. 105 (1983) 1455-1479. | MR | Zbl
[2] P. Du Bois et F. Michel, The integral Seifert form does not determine the topology of plane curve germs, Journal of Algebraic Geometry 3 (1994) 1-38. | MR | Zbl
[3] D. Eisenbud, W. Neumann, Three dimensional link theory and invariants of plane curves singularities, Annals of Math. Studies, 110 (1985) 172p. | MR | Zbl
[4] H. B. Laufer, On normal two-dímensional double point singularities, Israel Journal of Math. 31 Nos 3-4 (1978) 315-334. | MR | Zbl
[5] D. T. Lê, F. Michel, C. Weber, Sur le comportement des courbes polaires associées aux germes de courbes planes, Compositio Mathematica, 72 (1989) 87-113. | Numdam | MR | Zbl
[6] J. Milnor, Singular points of complex hypersurfaces, Princeton University Press (1968). | MR | Zbl
[7] W. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268-2 (1981) 299-344. | MR | Zbl
[8] A. Pichon, Sur les singularités normales d’équations . thèse, Université de Genève (1996).