Contributions mathématiques
Propriétés de moyenne des fonctions CR sur une hypersurface.
Femmes & math, 1er Forum des Jeunes Mathématiciennes (1996), pp. 43-46.
Paolantoni, Victoria 1

1 Equipe d’analyse complexe, U.R.A. 225 Université de Provence - Technopole de Château-Gombert C.M.I. 39, rue Joliot-Curie- 13453, Marseille Cedex 13.
@article{RFM_1996__2_S1_43_0,
     author = {Paolantoni, Victoria},
     title = {Propri\'et\'es de moyenne des fonctions $CR$ sur une hypersurface.},
     journal = {Femmes & math},
     pages = {43--46},
     publisher = {Association femmes et math\'ematiques},
     year = {1996},
     language = {fr},
     url = {http://www.numdam.org/item/RFM_1996__2_S1_43_0/}
}
TY  - JOUR
AU  - Paolantoni, Victoria
TI  - Propriétés de moyenne des fonctions $CR$ sur une hypersurface.
JO  - Femmes & math
PY  - 1996
SP  - 43
EP  - 46
PB  - Association femmes et mathématiques
UR  - http://www.numdam.org/item/RFM_1996__2_S1_43_0/
LA  - fr
ID  - RFM_1996__2_S1_43_0
ER  - 
%0 Journal Article
%A Paolantoni, Victoria
%T Propriétés de moyenne des fonctions $CR$ sur une hypersurface.
%J Femmes & math
%D 1996
%P 43-46
%I Association femmes et mathématiques
%U http://www.numdam.org/item/RFM_1996__2_S1_43_0/
%G fr
%F RFM_1996__2_S1_43_0
Paolantoni, Victoria. Propriétés de moyenne des fonctions $CR$ sur une hypersurface.. Femmes & math, 1er Forum des Jeunes Mathématiciennes (1996), pp. 43-46. http://www.numdam.org/item/RFM_1996__2_S1_43_0/

[1] A. Boggess, R. Dwilewicz et A. Naget The hull of holomorphy of a non isotropic ball in a real hypersurface of finite type. Trans. A.M.S. 323 (1991), 209-232 | MR | Zbl

[2] E. Chirka Analytic representation of CR functions. Math.USSR.Sbornik Vol.27 (1975) No.4, 526-553 | MR | Zbl

[3] E.E.Levi Sulle ipersuperfici dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse. Ann.Mat.Pura Apppl.18 (1911), 69-79 | JFM

[4] H. Lewy On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables. Ann of Math. 64 (1956), 514-522 | MR | Zbl

[5] A. Nagel Vector fields and nonisotropic metrics. Beijing Lectures in Harmonic Analysis, Annals of Math.Studies No 112, Princeton University Press (1986), 241-306w | MR | Zbl

[6] E.Straube CR distributions and boundary values of analytic functions . Dis- sertatíon submitted to the Swiss Federal institute of technology Zurich for the degree of doctor of Mathematics, Zurich (1983)

[7] F, Trèves Approximation and representation of functions and distributions annihilated by a system of complex vector fields. Ecole polytechnique (1981) | MR | Zbl

[8] A. E. Tumanov Extension of CR functions into a wedge from a manifold of finite type. Math.Sb.Nov.Ser.136 (1988), 128-139 ; English Transl.,Math. USSR Sbornik 64 (1989), 129-140 | MR | Zbl