@article{RCP25_1993__44__1_0, author = {DeWitt-Morette, C\'ecile}, title = {Functional {Integration} {A} {Multipurpose} {Tool}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:1}, pages = {1--24}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {44}, year = {1993}, language = {en}, url = {http://www.numdam.org/item/RCP25_1993__44__1_0/} }
TY - JOUR AU - DeWitt-Morette, Cécile TI - Functional Integration A Multipurpose Tool JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:1 PY - 1993 SP - 1 EP - 24 VL - 44 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://www.numdam.org/item/RCP25_1993__44__1_0/ LA - en ID - RCP25_1993__44__1_0 ER -
%0 Journal Article %A DeWitt-Morette, Cécile %T Functional Integration A Multipurpose Tool %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:1 %D 1993 %P 1-24 %V 44 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://www.numdam.org/item/RCP25_1993__44__1_0/ %G en %F RCP25_1993__44__1_0
DeWitt-Morette, Cécile. Functional Integration A Multipurpose Tool. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 44 (1993), Exposé no. 1, 24 p. http://www.numdam.org/item/RCP25_1993__44__1_0/
[a] Feynman's Path Integral; Definition Without Limiting Procedure", Commun. Math. Phys. 28, 47-67. | MR | Zbl
(1972) "[b] Feynman Path Integrals; I. Linear and Affine Techniques; II. The Feynman-Green Function", Commun. Math. Phys. 37, 63-81. | MR | Zbl
(1974) "[c] The Semi-Classical Expansion", Annals of Physics 97, 367-399. | MR | Zbl
(1976) "[d] The semiclassical expansion of the anharmonic-oscillator propagator" J. Math. Phys. 20, 844-855. | MR | Zbl
(1979) "[e] Path Integration in Non relativistic Quantum Mechanics", Physics Reports 50, 266-372. | MR
, and (1979) "[f] Path Integrals and Conservation Laws", Phys. Rev. D28, 2503-2516. | MR
and (1983) "[g] Feynman-Kac formula in phase space with application to coherent-state transitions", Phys. Rev. D28, 2517-2525. | MR
and (1983) "[h] The Caustic Problem in Quantum Mechanics with Application to Scattering Theory", Phys. Rev. D28, 2526-2546. | MR
, and (1983) "[i] Glories - and other degenerate critical points of the action", Phys. Rev. D29, 1663-1668.
and (1984) "[j] Orbiting cross-sections, application to black hole scattering. Armadillo preprint.
, , , and (1992).[k] Feynman path integrals. From the Prodistribution Definition to the Calculation of Glory Scattering", in Stochastic Methods and Computer Techniques in Quantum Dynamics, ed. H. Mitter and L. Pittner, Acta Physica Austriaca Supp. 26, 101-170. Reviewed in Zentralblatt für Mathematik 1985. | MR | Zbl
(1984) "[l] Quantum Mechanics in Curved Spacetimes ; Stochastic Processes on Frame Bundles" in Quantum Mechanics in Curved Space-Time. Ed. by J. Audretsch and V. de Sabbata (Plenum Press, New-York). | MR | Zbl
(1990) "See reference l.d.
Feynman Functional Integrals for Systems of Indistinguishable Particles" Phys. Rev. D3, 1375-1378.
and (1971) "Computed in l.i, using results developed in l.f, l.g, l.h ; summarized in l.k.
[a] The principle of Least Action in Quantum Mechanics" (Princeton University Ph. D. Dissertation) Available from University Microfilms Inc. P.O. Box 1307, Ann Arbor, MI 48106. Tel 1-800-521 0600.
(1942) "[b] Mathematical Theory of Feynman Path Integrals (Lecture Notes in Mathematics # 523, Springer-Verlag, Berlin) | MR | Zbl
and (1976)The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals". Bibos preprint and references therein (submitted to Crelle's Journal). | MR | Zbl
, , and (1992) "[c] A simple definition of the Feynman integral, with applications" Memoirs of the American Mathematical Society #288 (Providence, Rhode Island) and references therein. | Zbl
and (1983) "The construction called here the "Cartier Bridge" will be published in a Note aux Compte-Rendus de l'Académie des Sciences by and . In the years to come the authors will write a book on functional integration and test the proposed axiomatic on many problems of physical interest.
[a] General White Noise - An Infinite Dimensional Calculus" monograph to appear. | MR | Zbl
, , , . "Lectures on White Noise Analysis", in Proc. Preseminar Intl. Conf. on Gaussian Random Fields, edited by T. Hida and K. Saito, Nagoya. | MR | Zbl
. (1991) "[b] Characterization Theorem A characterization of Hida distributions", J. Funct. Analysis 101, 212. | MR | Zbl
, and . (1991) "[c] Feynman Integrals Generalized Brownian functionals and the Feynman integral". Stoch. Proc. Appl. 16, 55-69. | MR | Zbl
, and . (1983) "White Noise Analysis and the Feynman integral". Universidade da Madeira preprint UMa-Mat 4/91, to appear in Proc. III. Intl. Conf. Stoch. Proc, Physics, and Geometry, Locarno.
. (1991) "The Feynman integrand as a Hida distribution" J. Math. Phys. 32, 2123 (1991). | MR | Zbl
, , . (1991). "Constructing the Feynman integrand" Ann. Physik 1, 49. | MR
, . (1992) "The Feynman Integral. Recent results" Universidade da Madeira Preprint UMa-Mat 10/92. | MR
. (1992) "Helvetica Phys. Acta 23, 567. | MR | Zbl
(1950)Proc. Phys. Soc. A63, 681. | MR
(1950)Helvetica Phys. Acta 23, 567. | MR | Zbl
(1950)Proc. Phys. Soc. A63, 681. | MR
(1950)La Théorie des distributions en dimension quelconque et l'Intégration stochastique" dans Stochastic Analysis and Related Topics Eds H. Korezlioglu and A.S. Ustunel, pp. 170-233 (Lecture Notes in Mathematics # 1316, Springer-Verlag). | MR | Zbl
(1988) "Stochastic Analysis (Grundlehren der Mathematik, Springer-Verlag, Berlin). | MR | Zbl
(1993)Eléments de probabilités quantiques", in Séminaire des Probabilités XX (Lecture Notes in Mathematics #1247) Eds J. Azéma, P.A. Meyer, et M. Yor (Springer-Verlag, Berlin). | Numdam | Zbl
(1986-1987) "A Path Integral for Spin" Phys. Rev. 176, 1558-1569. | MR | Zbl
(1968) "