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FUNCTIONAL I N T E G R A T I O N 

A MULTIPURPOSE TOOL (*) 

Céci le D e W i t t - M o r e t t e 

Department of Physics and Center for Relativity. 

University of Texas, Austin T X 78712. 

Based on joint work with Pierre Cartier 

P r é a m b u l e 

Je dois beaucoup à Yvonne Choquet-Bruhat. Et, s'il me fallait présenter les problèmes 

où elle m'a montré l'idée simple qui va au cœur du sujet, je parlerais des heures, des jours 

sur ... l'Analyse, les Variétés et la Physique. Mais il m'a fallu faire un choix. Pourquoi 

choisir l'intégration fonctionnelle? Peut-être pour marquer le cinquantième anniversaire 

de l'intégrale de Feynman. En réalité, en souvenir de deux dates personnelles: 

En 1969, Yvonne Choquet m'invita à faire 3 conférences. Pourquoi m'invita-t-elle? 

Nous nous connaissions alors fort peu - encore que nous découvrîmes plus tard avoir été la 

même année en septième à Victor Duruy. J'ai été d'autant plus étonnée de recevoir cette 

invitation que je m'engourdissais alors dans une vie scientifique sclérosée par les règlements 

concernant les époux dans la même profession. A l'occasion de ces conférences, je revins 

à l'intégrale de Feynman, sujet qui m'avait intéressée vingt ans auparavant, et je repartis 

bon pied, bon oeil. 

En 1971, Yvonne, bien que ne travaillant pas elle-même sur le sujet, réalisa qu'il me 

manquait un élément essentiel pour aller au-delà des idées communément acceptées, et 

elle me dit de lire Bourbaki, livre VI, chapitre IX, page 70 et suivantes. J'y découvrais 

les promesures, dans une présentation facile à généraliser pour les besoins de l'intégrale de 

Feynman. 

( * ) C e t e x t e r e p r e n d une p r é p u b l i c a t i o n de l ' I H E S de Novembre 1992 
j H E S / P / 9 2 / 8 4 

To appear in the Proceedings of the International Colloquium in Honour of Yvonne Choquet 

Bruhat Eds. M Flato, R. Kerner, A. Liclmerowicz (Kluwer academic publishers) 
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Yvonne n'a pas, sous son nom, de publication sur l'intégrale fonctionnelle mais elle 

est à l'origine de travaux sur le sujet. C'est avec grand plaisir que je lui offre aujourd'hui 

quelques progrès récents sur l'intégrale de Feynman. Ces progrès doivent beaucoup à Pierre 

Cartier qui a su utiliser les résultats des physiciens pour construire une axiomatique de 

l'intégrale de Feynman. 

A b s t r a c t 

The goal is to extract from work done by physicists during the last fifty years an 

axiomatic basis for functional integration which will provide simple and robust meth

ods of calculation, in particular for integration by parts, change of variable of integra

tion, sequential integrations. The mythical integrator V in physicists' equations such as 

^ φ exp (S((f) — ft (J, φ))) Τ>φ = Z(J) is not unique ; but given two Banach spaces Φ 

and Φ', and two continuous bounded maps Θ : Φ χ Φ' —•> C, and Ζ : Φ' —» C, one can 

choose an integrator VQ^Z satisfying the equation / φ Θ(<̂ >, = Z(J) and a related 

normed space Jr®)ζ of functional F on Φ integrable by T>QZ- Prodistributions, white 

noise integrators, and, of course, Lebesgue measures fit with proposed scheme. 
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Functional integration 

1. - I n t r o d u c t i o n 

The subtitle on the French poster says "Un outil sûr et performant". The English 

subtitle says α Α reliable and efficient tool". Let us say a "multipurpose tool". Given the 

title of the Colloquium, I have selected three applications of Feynman path integrals, one 

in Analysis, one in Differential Geometry, and one in Physics. In each case I shall only 

state the problem, indicate the key issues which have been solved, and give the answer. 

No one will question the answers; they are clearly right; but are Feynman path inte

grals still a mathematical nonsense? The answer is "no" and I shall present a mathematical 

framework, nearly completed, which makes them not only efficient but also reliable. Pierre 

Cartier is the architect of this bridge from mathematics to physics. 

2 . - P rod i s t r ibu t ions 

Given a locally convex space X, and a projective family of finite dimensional spaces 

{ X e * } with the usual coherence conditions which make it possible to reconstruct X from 

{ X e * } , a promeasure μ on X is a projective family {μ&} of bounded measures on { X a } which 

satisfies coherence conditions adapted to the definition of { X a } . 

A topology on X defines the dual space X ' of X and one can construct the family 

{J7μα] of Fourier transforms of the promeasure {μα}. The coherence conditions satisfied 

by {Ρμα} are simpler to state than the coherence conditions satisfied by {//<*}, namely. 

(2.1) 
Ρμα(0) = constant independent of a 

If : X? -> Xa, then Τμα = Τμβ ο Ußa, Ußa : Χ' β -+ X'ß 

where Ußa is the transpose of Ha@. 

X' 

Π : = { π α } | 

{Κ} 

Χ 

i {Π α }=:Π 

{Χ-} 

s'(K) ^- s'(xa) 

Figure 1 : Prodistributions 
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Let 

(2.2) Π : ( J X'a-+ Χ' be defined by Π := Π α . 

A prodistribution Tw is a family of Fourier transforms {Twa} where wa is not necessarily 

a bounded measure, but where JFwa is a continuous function on X ' a . Therefore there is 

not necessarily a promeasure w corresponding to a prodistribution Tw. 

Does a prodistribution define an integrator ? 

Is such an integrator a practical tool for Physics ? 

The answer is "yes" to both questions because of the following equations : 

Let Ρ be a linear continuous map Ρ : X —» Y. Let J-io be a prodistribution on X. Let 

/ : Y - C 

Ρ 

F f 

1 y Y , Pw 

χ · ( χ' ' 
Ρ 

ΣΓ\ν JF(Pw) 

γ · 

Figure 2 : Linear change of variable of integration 

(2.3) / F(x)dw(x) = / f{y)d{Pw){y), 

(2.4) f(Pw) — Tw ο P. 

If Ρ maps the infinite dimensional space X into a finite dimensional space Y, these equations 

define the functional integral over X. If Y is infinite dimensional, these equations define a 

manipulation of the functional integral. 

These two equations are sufficient to solve nontrivial problems. For instance, they 

have been used to compute the glory scattering cross section of classical waves by black 
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holes. The cross section can be expressed in term of a functional integral. But this func

tional integral cannot be computed by any of the commonly used methods: discretization, 

analytical continuation, W K B expansions, for the following reasons: 

a) the paths take their values in a riemannian space, and discretization of the paths 

is ambiguous; 

b) Glory scattering is a scattering process where the final momentum is antiparallel 

to the initial momentum. This momentum-to-momentum transition cannot be computed 

from a position-to-position probability amplitude because there are no plane waves in 

curved spacetimes. Hence the path integral has to be set up for paths taking their values 

in phase space. Therefore, analytical continuation of a Wiener type integral is not an 

option because there are no Wiener measure for the space of paths in phase space (the 

positivity of the Jacobi operator in configuration space does not imply the positivity of 

the corresponding Jacobi operator in phase space); 

c) the critical points of the action are degenerate: the paths are caustic forming in 

phase space. Hence the W K B approximation "breaks down". 

On the other hand one can use the equations (2.3) and (2.4) to compute the glory 

scattering cross section. A long, but unambiguous, calculation gives, in the leading order 

of the semiclassical approximation 

(2.5) ^ = 2 ^ - * I p l B j ^ p T 1 |p|S,smé>) 

where Ω is the solid angle in the θ direction, ρ is the incoming momentum, Β[θ) is the 

impact parameter of a particle scattered in the θ direction, Bg is the glory scattering 

impact parameter, Bg ~ 2?(π), Jos is the Bessel function of order 2s (s = 0 for a scalar 

particle, s = 1 for a photon, s = 2 for a graviton). 

In the case of scattering by Schwarzschild Black Holes, the function Β(θ) has been 

computed by Darwin. (Β(θ) = M(3y/3 + 3 .48exp( -0 ) ) , M is the mass of the Black Hole 

in units where G = c — 1. If we use this function Β(θ) in (2.5) the above cross section 

matches perfectly the numerical cross sections computed by Handler and Matzner who 

used the technique of partial wave decomposition, that is a totally different technique. 

References to other applications of the prodistribution formalism are given below. I 

shall only mention the calculation of the propagator for the anharmonic oscillator 
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(2.6) \γ + \ » \ 2 + \qA = Ο, 

because it shows that, contrary to commonly accepted ideas, the propagator is not singular 

in A, but tends to the harmonic oscillator propagator when λ tends to zero. 

The third application I have chosen is the expression for propagators between two 

points a and δ of a multiply connected space M. A simple property of the path integral 

representation of the propagator gives : 

(2.7) \Ka(b,tb;a,ta)\ = 2 Xa(gi)Ki(b,ti;a,ta) 
G I GTT ! ( Λ / ) 

where Κ1 is the propagator obtained by summing over all the paths in the same homotopy 

class, and 

χ* : π χ ( Λ / ) - C 

is a unitary representation of the fundamental group π 1 (Λ ί ) . 

Prodistributions are not necessary to derive this result. I chose this example, because 

once more, I have to thank Yvonne Choquet-Bruhat. I had obtained the propagator (2.7) 

"experimentally" by studying Schulman's calculation of the path integral for a top, as a 

model for a path integral for spin. I knew (as a physicist knows) that the result was correct, 

but I knew that my proof was not convincing, to say the least. I had the opportunity to 

discuss the problem with Yvonne and R. Bott during a Les Houches session. When I 

asked Bott to help me clean up the proof, he objected strenuously to the fact that I was 

combining an element of π1(Μ) with a homotopy class of paths from a to b φ a. But 

Yvonne convinced Bott not to give up the discussion. I then realised that I had to pay 

more than lip service to the fact that although the groups π\(Μ) based at two different 

points are isomorphic, they are not canonically isomorphic. The proof of (2.7) was then 

immediate : use the principle of superposition of probability amplitudes to write Κ as a 

linear combination of all the A' z ' s . Determine the coefficients of this linear combination 

by requiring that the result be independent of the base point chosen for πχ(Μ) (more 

precisely independent of the homotopy mesh chosen to associate gi and Kl). The linear 

combination is then determined up to an overall phase factor, hence the absolute value 

6 



signs in (2.7). This example shows that functional integrals reflect, as could be expected, 

the global properties of the manifold where the paths take their values. 

The problems I have mentioned were solved one at a time, the space of integrable 
functional on X had not been identified. 

Anharmonic oscillator I ^ 2 + Α ω \ 2 + ^ ς 4 = 0 is not singular in λ 

On a multiply connected space, π {(M) * {e} > 

K a ( b , t b ;a , tj | = Σ % a (g i )K i (b , t b ; a , t a } 

χ : κ J (Ml -> <l, unitary representation 

K 1 sum over paths in the i-th homotopy class 

Glory scattering 

= 4 π λ Βσ-=— J ? s 2 π λ Β . sin θ 
αΩ g d 9 1 g 1 

Riemannian space 
Phase space 
Degenerate critical point 
Classical wave 

^PRODISTRDB UTION 

Figure 3 : Examples 
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3. - T h e Car t ier Br idge 

Pierre Cartier is surveying the work which has been done by physicists and by math

ematicians on Feynman path integrals (see references below). Using the material at hand, 

he builds a bridge, now nearly completed, from mathematics to physics to make functional 

integration a robust tool ; in particular, a user friendly tool for 

integration by parts 

linear change of variable of integration 

successive integrals (generalized Fubini theorem) 

The bridge pillars are labelled by roman numerals, as stone pillars used to be; the roman 

numerals are repeated in the numbering of the equations. 

G 

/δ (ΚΪ -> X ' Χ -> /ô' (Ri . Integration over Χ 
D 

I - A quadruplet, X * X ' 

II - An integrator JS) e z defined by f θ (χ , η) < β ) θ ζ Χ = ζ ( η ) 

Examples : f exp(-2 π i <(η, χ)) exp (- π Q(x)) JSQX = exp (- π W(η)) 
J χ. 

jVexp | { s ( x ) +.1i<ii, x»J5 S t 2x = ζ(η) 

HI - An Α-norm on the space of functional over X 

IV - Q (x) = <Dx, x) not positive definite 
Q a(x) an auxiliary norm 

V - / F(x)<© x = ί Φ ( Χ ) α μ ( Χ ) 

λ 

Robust for integration by parts 
linear change of variable of integration, 
generalized Fubini theorem 

Figure 4 : The Cartier Bridge. 
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Pillar I : In broad outline, let X and X' be two Banach spaces in duality making together 

with the Schwyartz spaces <S(R) and <S'(R) the quadruplet 

(3·/ ι) 
G 

5 ( R ) <-> X' ^ X <-> S ' (R) . 

D 

D is a differential operator cicting on X, and G is its kernel (Green function). 

(3 . / 2 ) DG = 1 , GD = 1. 

The boundary conditions which define a unique kernel G are encoded in the space X. For 

instance, if D is a second order differential operator on the space X of paths χ : [ί α , ί&] —> R d 

which vanish at ta and Ga^(t,s) is the unique kernel of D which vanishes for either t 

or s equal to ta or 

In the case X = X ' , the quadruplet reduces to a Gelfand triplet. Although the mathematics 

of the quadruplet is, to a large extent, similar to the mathematics of the triplet, the physics 

is considerably different. The physicist working with a Lagrangian needs D : X —• X ; where 

X' is not necessarily equal to X. 

Pil lar I I : Physicists want the action, integral of the Lagrangian, to appear explicitly. 

They need a path integral of the following type. 

(3.J/1) X e x p
 (is(x))Vx 

rather than an integral of the type 

(3./I2) J exp ^—i J V(x(t))dt^ dw(x). 

This cannot be accomplished by a universal "Lebesgue" measure Vx and Cartier has 

proposed the following framework. Let T>otz be an integrator on X characterized by an 

equation 
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(3 . / J 3 ) / Θ(χ,'η)νθ)ζζ = Ζ (η) for η Ε Y; 
Jx 

here X and Υ are two Danach spaces, Θ(χ, η) and Ζ (η) are scalar valued functions dictated 

by the problem under consideration. 

A simple example : wTith the notation of pillar I, if Υ = Χ ' , and Q{x) = (Dx,x), and 

W(V) = (V,GV), 

(3 . J / 4 ) / exp(—2πζ {?/,χ)) exp(—KQ(X))VQX — exp(—π\Υ(η)) 
JX 

defines an integrator VQ. Given the relationship between Q and VF, the subscript Q is 

sufficient to characterize the integrator. 

V 
We note that if X = W and Q(x) = ^ (xl) , then Vqx is the ordinary Lebesgue measure 

i=l 
namelv dx1 · - · dxv. 

An example from quantum physics : Let ψ be a field and J a source; then the action S 

and the generating functional Z(J) introduced by Schwinger define an integrator T>s,z by: 

( 3 . / / s ) J exp (5(y>) + ft .(J, y>») Z>s>*¥> = Z ( J ) . 

T/ie important point is to note that there is no universal Ί)φ even if we abbreviate Τ)®ζψ 

by Ί)φ when the context is clear. 

Application : Ward-Takahashi anomalies. (See also (3. VI.3)). It has often been expected 

that the symmetries of the generating functional Ζ (J) are the same as the symmetries 

of the classical action S (φ). Originally, the Ward-Takahashi identities expressed invari

ance properties of Z(J) under transformations leaving S(ip) invariant, assuming Όψ (no 

reference to S or Z) to be invariant. When "anomalous" terms were found in the Ward-

Takahashi identities, Fujikawa showed that, in the case of chiral transformations, the so 

called anomalous term was simply the determinant of the linear map Μ : φ H-> Μφ, 

defining the chiral transformation, i.e. 
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(3 . / J 6 ) τ>θ,ζ(Μφ) 

Pillar III : Norms || || on X, and norms || | |^ on the space Τ of integrable functionals 

over X with respect ot VQ^Z-

Sobolev norms on X are usually suitable 1 . For instance 

(3.1/J i) Χ ^ ΐ ^ 1 , X ' = W~l 

where W™, also labelled i J m , is the space of square integrable functions whose partial 

derivatives of order < m (in the sense of distributions) are also square integrable. Its dual 

W^™ is the space of distributions made of derivatives of order < m of square integrable 

functions. 

In the case X = X ' , Albeverio and H0egh-Krohn have proposed a space of integrable 

functionals which are Fourier transforms of bounded measures on X. Adapting their sug

gestions to the integrators defined by the second pillar we consider (as a minimal choice) 

the space of integrable functionals to be the space ^e,z (J7 f ° r Feynman) of functions F 

such that 2 

( 3 . ϋ 7 2 ) F(x) — / θ ( χ , η)άμ(η), F G Τ® ζ (abbreviated to Τ) 
JY 

where μ is a bounded measure on the Banach space Y, possibly complex. This equation 

does not imply that there is a one-to-one correspondence between μ and F. It does not 

mean either that, given one needs to identify μ in order to compute / F(x)Vx. It only 
Jx 

means that we can write 

( 3 . / J / 3 ) / F(x)Vx= f Vx I Θ(χ,η)άμ(η) 
JX Jx JY 

1 For instance if one requires that the action of the system be finite. 
2 For simplicity we assume the functions θ on Χ χ Y and Ζ on Y to be bounded and 

continuous. 

11 

= D e t M · Ρ Θ , Ζ Μ ^ Θ , Ζ ^ ) · 



= / άμ(η) ί Θ(χ,η)νχ= ί Ζ(η)άμ(η) 
JY JX JY 

and it suggests a norm on Τ 

iZ.Uh) :=min / \Ζ{η)\ά\μ\{η). 
V* JY 

Although μ is not necessarily defined by (3.III2), we can prove in many cases that / F(x)Vx 
JX 

is well defined: assume that there exists a family { A n } of Borel measures 3 on X such that 

( 3 . m 5 ) Ζ(η) = \ϊπι ί β(χ,η)ά\η(χ), 
n=oo J% 

then 

( 3 . / / / e ) / Ζ(η)αμ(η) = \im / d\n(x) / Θ(χ,η)άμ(η) 
JY n = o c JX JY 

= lim / d\n(x)F(x). 
n=oo Jx 

Neither the measure μ in (3.III2) nor the family { λ „ } in (3.III5) are uniquely defined. But 

(3.III5) which is independent of the choice made for μ and (3.III2) which is independent 

of the choice made for { λ η } lead to the equality (3.111e). 

Pillär I V : The axiomatic formulation of functional integrals summarized in the pillar 

II by / Θ(χ, r})T>Q z x = would be nearly useless to physicists if it did not include 

indefinite quadratic forms. For instance, one may wish to compute (3.III4) in terms of 

a Fresnel integrator, exp(— KQ(X))VQX with Q(x) = i(Dx,x), where D is the Jacobi 

operator defined by the action 5 on X. Therefore one needs an axiomatic framework 

which includes the d'Alembertian 

( 3 . / V i ) D = r T 

3 X is a separable complete metric space, hence Borel subsets are defined. The λ η are 

not necessarily bounded but we assume that |λ„.| (Β) is finite for Β C X bounded. 
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That is, one needs to redefine the norm \\F\\A — j \Ζ(η)\ά\μ\(η) when Ζ(η) = exp(—π\Υ(η)) 

with W not positive definite. Following the Gupta-Bleuler strategy, we introduce an aux

iliary quadratic form Qa positive definite 4 , Qa(x) > 0 for χ φ 0, to define an auxiliary 

norm II II on X which defines a norm on X 7 and a norm on Τ. 

This can be obtained by generalizing the well-known Sylvester decomposition of quadra

tic forms. Namely, we consider real-valued quadratic forms Q on infinite-dimensional space 

X with the following property: 

There exists a decomposition X = Χι φ X 2 into a direct sum such that 

(3-JV2). Q(x) = Qi(xi)-Q2 M 

for χ = X\ + X2, where x\ is in Xi and x^ in X 2 . Moreover Q\ and Q2 are positive definite 

quadratic froms, and define Xi and X 2 as (real) Hilbert spaces. 

This being so, put 

(3./V3) Qa(x) = Ql M + Q2 (X2) 

with x,xi,X2 as above. Then Qa is a positive definite quadratic from on X, hence the 

norm | |#| | α = Qa{x)1^2 under which X is complete. 

The decomposition mentioned in (3.IV2) is not unique but two different auxiliary 

norms || || and || | | a , are related by inequalities of the form 

(3.JV4) « Ι Ν Ι α ' < Ι Ν Ι . < / Ή . ' 

(for some constants ayß in R + ) hence either norm can be used on X. 

4 The case of a semidefinite quadratic form is not excluded but requires special con

sideration. The case of a degenerate quadratic form has already been investigated in the 

context of prodistributions. 
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Pillar V : On the first pillar, let the pair Χ , Χ ' in the quadruplet (3.1i), 

(3.VÎ) 
G 

S(R) w X' ^ X S ' (R) , 

D 

consist of Hilbert spaces and the quadratic form Q(x) := (Dx, x) be positive definite. Then 

X is of measure zero with respect to the white noise measure on <S'(R). Moreover powerful 

theorems have been derived for the space of Hida distributions defined on <S'(R). So why 

work with the pair X , X ' ? T w o reasons : 

- The structure (G, D) does not exist on the pair S(R) , S ' (R) , indeed G : S(R) -> S ' (R) 

does not have an inverse. 

- We shall show that, if Γβ~π<^ is in the space Τ of Feynman integrable functions, 

then 

(3.V2) / F(x)exp(-nQ(x))VQx= I F(X)dwQ(X), 
JX JS'(M) 

where the Fourier transform of dwq and the Fourier transform of exp(—KQ(X))VQX eval

uated at η G <S(R) are identical, and where F is the extension of F from X to <S'(R) 

constructed as follows. 

Let {e^} and {ε1} be two orthonormal bases on X and X ' , respectively, such that ε1 G <S(R); 

assume 

( 3 . v 3 ) Dei=ei , (ei,ej) = 6l. 

Let us define 

( 3 . v 4 ) 
Ν 

PN:S'(R)-^X by PNX = ] Γ ( Χ , ε 1 ) - e < ; 

2 = 1 

then the limit 

( 3 . v 5 ) := lim F\1\X) 
N — OG 

exists a.s. for WQ and defines the extension of F from X to <S'(R). 
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The privileged extension of F to F is analogous to the extension of a continuous 

function defined on the rationals to a continuous function defined on R. 

We can summarize (3.V2) and (3.II 4) in one formula 

(3.Ve) / F(x)exp(-27Π ( 77 , x ) ) e x p ( - n Q ( x ) ) V q x 
Jx 

= f F(X)exp(-2m(v,X))dwQ(X), 
JS'(R) 

for η e S (R) . 

Pil lar V I : Expectation values of operators. Functional integrals can be used to compute 

expectation values of "time ordered" products of operators. When the Cartier Bridge is 

completed, pillar VI will present functional integration in quantum physics as a general

isation of the relationship between the Schrödinger and the Heisenberg quantizations. It 

will give another justification of the well known formulae : 

j f exp (S(v>) + ft (J, φ))) Ve,z(<p) 

(S.VI2) 

= ( * 6 | T e x p {-ïïllHdt) | Φ α ) (Dirac bracket) 

= : (Φ 6 ,< 6 |Φ α ,< α >7 (Feynman bracket) 

and 

(3.VJ3) j f F ( V ) e x p ( i (S{v) + ft (J,<p))j Ve,z(<P) = ( * 6 , * » | T F ( V ) | * e , * e > j 

with the following notation 

- Xba is the space of paths [or histories] with given values at times ta and i& corre

sponding respectively to the states |Φ α ) and |Φ&) 

- Η is the hamiltonian corresponding to the action S (φ) + h (J, φ). 

- Τ is a map from the space Τ of bounded functionals on X& ? a to the space of bounded 

operators on the Hilbert space of states of the system, 
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(3 .W 4 ) Τ : Τ -* Β(Η) 

which time-orders products of operators. For instance, in quantum mechanics, 

(3.VI 5) Τφι{ί)φ2{3) = 0(< - s)Êi(<)£ 2(s) + 0 ( 3 - ί)£ 2(*)Ει(*) 

where 0(i — θ) = 1 for ί > 5 , 0(< — θ) = 0 for ί < s, 0(ί — s) undefined for t = s. 

The time ordering operator Τ on Τ is defined by the functional integral (3.VI3) , and 

not by equations such as (3.VI5) which can be ambiguous at equal times. Therefore, time 

ordering commutes with differentiation 

(3-Vh) 3<|r«0*.)l> = ( | r ^ M | ) 

or in field theory 

(3 .W7) ^{\Τφ)φ(ν)\) = (\τ^φ(χ)Ψ(ν)\} 

Application : Quantum Noether's theorems. 

Noether's theorems apply to classical currents, i.e. currents which are functional of 

fields satisfying the Euler-Lagrange equations. There is no reason to expect that they apply 

to expectation values of time ordered product of currents : the left hand side of (3.VI3) is, 

for ψ a field, an integral over all fields with given values on an initial and a final spacelike 

surface. The Ncether theorems are the classical limits of "quantum Noether's theorems" 

which are consequences of (3 .VI3) : Indeed, under a change of variable of integration 

φ Η-* φ, it follows from the defining equation of the integration VQ^Z that 

(3.V/ 8) 0 = J Θ(φ, J)V&iZ(<P) - J Θ ( 0 , J )2>e ,z (0 ) . 

In case of a linear map, Φ = Μφ, it follows from (3.lie) that 
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( 3 . W 9 ) 0 = J ((Det 1)Θ(φ,.7)-(ΌβίΜ)Θ(Μν,.η)νΘ!ζ(φ), 

and, if Θ(ν?, J ) = exp ( ^ ( 5 ( y » ) + Ä < J, y>))) , 

(3 .F / io ) 0 = / ΓβχρΓ^·5(φ) + i (J, v?) + trace In l \ 

- e x p (^3(Μφ) + ι^,Μφ) + trace l n M ^ D e , ^ ) . 

Consider the linear map 

(3.V/ii) (M^) ( i ) = + ^ V ( ^ ) , 

where 0 is a continuous map on the domain of φ ; it follows from (3.VIio) that 

exp ( l % , ) + t ( J , ^ 

^ S ( M ^ ) + i {J,M<p) + trace In il/j 2>θ,ζ(φ). 

In terms of time ordered product of operators (3 .VI3) , this equation says 

( 3 . W 1 3 ) 0 = ( ^ 5 ( M ^ ) + t (J, JWV) + trace In . 

Repeated functional derivatives of (3.VI13) with respect to J give the correct Ward-

Takahashi identities. At J = 0 equation (3 .VI13) gives 

(3.VIlt) {TTe ( ^ ( M V ) ) ) = - ^ t r a c e l n M . 

Trace In M is known as the anomaly function - but should not be unexpected. 
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The action S((f) = / L(^\ φ,μ )dx, therefore it follows from (3.VI14) that 

( r / ( I - έ ( έ ) ) ^ + έ G ^ * ) 
= —ih trace InM. 

Noether's theorem says that, the current density 

°Ψιμ ψ=ψ<:ί 

evaluated at solutions ipc\ of the Euler-Lagrange equation satisfies the equation 

for actions invariant under the transformation φ ι-» ψ + δψ. Even if we assume (see pillar 

VII) that 

equation (3.VI15) says only that 

lim ( 

Pillar V I I : Renormalization. 

We applied to two cases the defining equation of the integrator V®yz 

(Z.VIh) [ e(<ptJ)T>e,z<P = Z(J). 
Jx 

a) The gaussian case: 

(Z.VIh) 
Θ(φ, J) = exp(—%Q(<p) - 2πι (J, φ}) 

Z(J)/Z(0) = exp(-nWQ(J)) 
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where the second functional derivative of Q is the inverse of the second functional derivative 

of Wo : 

( 3 . y / j 3 ) 
62Q^)S2WQ(J) 

δφ2 SP 

b) The quantum case: 

{Z.VIh) 
Θ ( 9 , J ) = exp (jr(S{<p) + h(J,<p)j) 

Z(J)/Z(0) =:exp(j-W(J)). 

We shall now analyze the relationship between the action 5(<^>), the generating func

tional Z(J)/Z(0) and the integrator VQZ- The generating functional encodes the effect 

of the interaction stated by the action S (φ) + ft ( J, where φ may be an abbreviation for 

several interacting fields, or a self-interacting field. Experiments measure Ζ (J) directly or 

indirectly. In this sense we refer to Ζ (J) as an experimental quantity. The effect of the in

teractions can, in a number of cases, show up as a change in the constants used to describe 

the non interacting fields. One says that the (bare) constants have been renormalized (by 

the interactions). The ratio of the constants before and after the interactions may be infi

nite if we model the interactions by local actions. Various regularization techniques can be 

used to evaluate them; important as they are in checking the theory against experiments, 

they should not be given logical precedence over renormalization. 

We cannot, a priori, choose the experimental generating functional, but we can assume 

the following property, 

Jx (exp ( i ( S { ( f ) + n ( J ^ ) ) ) ) ν θ > ζ ψ = °> 

and derive its consequences. From (3.VII 5 ) and (3. VI3), it follows that 

(3.VIh) ( o u t T — —— i n ) ——J 
\ ΤιδΨ IJ 

where the [in) and |out) state are the ones encoded in X. On the other hand, having in 

mind an equation reminiscent of (3 .VI3), we note that 
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(3.VJI 7) 
1 SW(J) _ 
h S J " 

Hence the Legendre transform Γ(</>) of W(J), 

(B.VIh) r(<p) = W(J)-h(J,lp) 

known as the effective action, is such that 

(3.VIh) 
1 δΤ 
h δφ 

and 

(3.VI10) Η τ Ι Ι ί η ) , 
Moreover, the second functional derivative of the effective action is the inverse of the second 

functional derivative of W 

(3.VI/ll) 
δ2Τ(φ) δ2Ψ{3) 
ηδψ2 U P 

This equation can be compared with (3.VII3). If the effective action Τ (φ) were equal to the 

action S (φ), the quantum case would be a gaussian case. Therefore we can consider the 

gaussian case as a non interacting quantum case, since it is a case where effective action 

and bare action are identical. 

We note also the following consequence of ( δ - Υ Π ^ , θ ) ' 

(3.VJ/ 1 2 ) exp ( i r t e ) ) 

4. - C o n c l u s i o n 

Given a space X of paths χ : [<a,*&] —* one can either work with 
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- iE 
δφ 

= 1. 

/ δΓ(φ) 
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χ EX or with {* (*i ) , · · · , ζ (ί ,ν)} G Md χ · · · χ Md (Ν factors). 

Working with X is admittedly more delicate than working with M r f , but much simpler than 

working on lim Md χ · · · χ Md (Ν factors). To mention but a few examples: 
_/V=oo 

- An integrator is simpler than the family of its finite dimensional distributions. 

- A linear change of variable in X is simpler than its discretized version on Md χ Md χ 

··· χ Md. 

- An integration by parts is simpler on X than on Md χ · · · χ Md etc ... 

The progress accomplished in recent years can be traced to the shift from Md χM d χ · · · xMd 

(arbitrary number of factors) to X. This can be seen, not only in the work reported here, 

but in the major progress due to P. Krée, P. Malliavin, P.A. Meyer, the White Noise team, 

in particular, T. Hida, H.-H. Kuo, L. Streit, M. de Faria, J. Pottshoff and Khandekar. 

Functional integrals are more than solutions of partial differential equations with a 

chosen set of boundary conditions. In particular, they provide information on the global 

properties of Md the target space of the paths. They provide representations of expecta

tion values of time ordered products of operators. Pierre Cartier and I plan to test the 

proposed axiomatic on a variety of problems to make sure that it covers, at least, the 

known applications of functional integrals. 
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