A geometric criterion for generating the Fukaya category
Publications Mathématiques de l'IHÉS, Tome 112 (2010), pp. 191-240.

Given a collection of exact Lagrangians in a Liouville manifold, we construct a map from the Hochschild homology of the Fukaya category that they generate to symplectic cohomology. Whenever the identity in symplectic cohomology lies in the image of this map, we conclude that every Lagrangian lies in the idempotent closure of the chosen collection. The main new ingredients are (1) the construction of operations on the Fukaya category controlled by discs with two outputs, and (2) the Cardy relation.

@article{PMIHES_2010__112__191_0,
     author = {Abouzaid, Mohammed},
     title = {A geometric criterion for generating the {Fukaya} category},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {191--240},
     publisher = {Springer-Verlag},
     volume = {112},
     year = {2010},
     doi = {10.1007/s10240-010-0028-5},
     mrnumber = {2737980},
     zbl = {1215.53078},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-010-0028-5/}
}
TY  - JOUR
AU  - Abouzaid, Mohammed
TI  - A geometric criterion for generating the Fukaya category
JO  - Publications Mathématiques de l'IHÉS
PY  - 2010
SP  - 191
EP  - 240
VL  - 112
PB  - Springer-Verlag
UR  - https://www.numdam.org/articles/10.1007/s10240-010-0028-5/
DO  - 10.1007/s10240-010-0028-5
LA  - en
ID  - PMIHES_2010__112__191_0
ER  - 
%0 Journal Article
%A Abouzaid, Mohammed
%T A geometric criterion for generating the Fukaya category
%J Publications Mathématiques de l'IHÉS
%D 2010
%P 191-240
%V 112
%I Springer-Verlag
%U https://www.numdam.org/articles/10.1007/s10240-010-0028-5/
%R 10.1007/s10240-010-0028-5
%G en
%F PMIHES_2010__112__191_0
Abouzaid, Mohammed. A geometric criterion for generating the Fukaya category. Publications Mathématiques de l'IHÉS, Tome 112 (2010), pp. 191-240. doi : 10.1007/s10240-010-0028-5. https://www.numdam.org/articles/10.1007/s10240-010-0028-5/

1. M. Abouzaid, A cotangent fibre generates the Fukaya category. arXiv:1003.4449 . | MR | Zbl

2. M. Abouzaid, Maslov 0 nearby Lagrangians are homotopy equivalent. arXiv:1005.0358 .

3. M. Abouzaid, P. Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), p. 627-718 | MR | Zbl

4. A. A. Beĭlinson, Coherent sheaves on P n and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), p. 68-69 | MR | Zbl

5. F. Bourgeois, T. Ekholm, And Y. Eliashberg, Effect of Legendrian surgery. arXiv:0911.0026 . | MR | Zbl

6. K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), p. 165-214 | MR | Zbl

7. A. Floer, Morse theory for Lagrangian intersections, J. Differ. Geom. 28 (1988), p. 513-547 | MR | Zbl

8. A. Floer, H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), p. 13-38 | MR | Zbl

9. A. Floer, H. Hofer, D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), p. 251-292 | MR | Zbl

10. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Part I. AMS/IP Studies in Advanced Mathematics, 46 (2009), American Mathematical Society, Providence | MR | Zbl

11. K. Fukaya, P. Seidel, I. Smith, The Symplectic Geometry of Cotangent Bundles from a Categorical Viewpoint, Lecture Notes in Physics 757 (2009), Springer, Berlin | MR | Zbl

12. M. Kontsevich, Y. Soibelman, Notes on A ∞-algebras, A ∞-categories and Non-commutative Geometry Conference, in: Homological Mirror Symmetry, Lecture Notes in Phys. 757 (2009), Springer, Berlin | MR | Zbl

13. S. Mau, K. Wehrheim, And C. Woodward, A ∞ functors for Lagrangian correspondences, In preparation (2010).

14. M. Maydanskiy, P. Seidel, Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3 (2010), p. 157-180 | MR | Zbl

15. P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. Fr. 128 (2000), p. 103-149 | EuDML | Numdam | MR | Zbl

16. P. Seidel, A ∞-subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008), p. 83-114 | MR | Zbl

17. P. Seidel, Fukaya Categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathematics (2008), European Mathematical Society (EMS), Zürich | MR | Zbl

18. C. Viterbo, Functors and computations in Floer homology with applications, Part I, Geom. Funct. Anal. 9 (1999), p. 985-1033 | MR | Zbl

  • Kartal, Yusuf Barış Iterations of symplectomorphisms and p-adic analytic actions on the Fukaya category, Inventiones mathematicae, Volume 239 (2025) no. 3, p. 801 | DOI:10.1007/s00222-024-01308-7
  • Smith, Jack Quantum cohomology and Fukaya summands from monotone Lagrangian tori, Journal de l’École polytechnique — Mathématiques, Volume 12 (2025), p. 287 | DOI:10.5802/jep.290
  • Amorim, Lino; Cho, Cheol-Hyun Ungraded Matrix Factorizations as Mirrors of Non-orientable Lagrangians, Acta Mathematica Sinica, English Series, Volume 40 (2024) no. 1, p. 26 | DOI:10.1007/s10114-024-2268-1
  • Abouzaid, Mohammed; Groman, Yoel; Varolgunes, Umut Framed E2 structures in Floer theory, Advances in Mathematics, Volume 450 (2024), p. 109755 | DOI:10.1016/j.aim.2024.109755
  • Abouzaid, Mohammed; Bottman, Nathaniel Functoriality in categorical symplectic geometry, Bulletin of the American Mathematical Society, Volume 61 (2024) no. 4, p. 525 | DOI:10.1090/bull/1808
  • Abouzaid, Mohammed; Auroux, Denis Homological mirror symmetry for hypersurfaces in (ℂ∗)n, Geometry Topology, Volume 28 (2024) no. 6, p. 2825 | DOI:10.2140/gt.2024.28.2825
  • Gagnon-Ririe, Levi; Young, Matthew B. Frobenius–Schur indicators for twisted Real representation theory and two dimensional unoriented topological field theory, Journal of Geometry and Physics, Volume 203 (2024), p. 105260 | DOI:10.1016/j.geomphys.2024.105260
  • Bae, Hanwool; Jeong, Wonbo; Kim, Jongmyeong Calabi–Yau structures on Rabinowitz Fukaya categories, Journal of Topology, Volume 17 (2024) no. 4 | DOI:10.1112/topo.12361
  • Bosshard, Valentin Lagrangian cobordisms in Liouville manifolds, Journal of Topology and Analysis, Volume 16 (2024) no. 05, p. 777 | DOI:10.1142/s1793525322500030
  • Colin, Vincent; Ghiggini, Paolo; Honda, Ko The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I, Publications mathématiques de l'IHÉS, Volume 139 (2024) no. 1, p. 13 | DOI:10.1007/s10240-024-00145-x
  • Auroux, Denis; Efimov, Alexander I.; Katzarkov, Ludmil Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves, Selecta Mathematica, Volume 30 (2024) no. 5 | DOI:10.1007/s00029-024-00988-6
  • Abouzaid, Mohammed; Diogo, Luís Monotone Lagrangians in cotangent bundles of spheres, Advances in Mathematics, Volume 427 (2023), p. 109114 | DOI:10.1016/j.aim.2023.109114
  • Abuaf, Roland Hodge numbers and Hodge structures for 3-Calabi–Yau categories, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 32 (2023) no. 2, p. 337 | DOI:10.5802/afst.1739
  • Bai, Shaoyun; Côté, Laurent On the Rouquier dimension of wrapped Fukaya categories and a conjecture of Orlov, Compositio Mathematica, Volume 159 (2023) no. 3, p. 437 | DOI:10.1112/s0010437x22007886
  • Groman, Yoel Floer theory and reduced cohomology on open manifolds, Geometry Topology, Volume 27 (2023) no. 4, p. 1273 | DOI:10.2140/gt.2023.27.1273
  • Ganatra, Sheel Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures, Geometry Topology, Volume 27 (2023) no. 9, p. 3461 | DOI:10.2140/gt.2023.27.3461
  • Perutz, Timothy; Sheridan, Nick Automatic Split-Generation for the Fukaya Category, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16708 | DOI:10.1093/imrn/rnac363
  • Li, Wenyuan Lagrangian cobordism functor in microlocal sheaf theory I, Journal of Topology, Volume 16 (2023) no. 3, p. 1113 | DOI:10.1112/topo.12310
  • Ganatra, Sheel; Pardon, John; Shende, Vivek Sectorial descent for wrapped Fukaya categories, Journal of the American Mathematical Society (2023) | DOI:10.1090/jams/1035
  • Shende, Vivek An algebraic approach to the algebraic Weinstein conjecture, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 2 | DOI:10.1007/s11784-022-00958-5
  • Kim, Joontae; Kim, Seongchan; Kwon, Myeonggi Remarks on the systoles of symmetric convex hypersurfaces and symplectic capacities, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 2 | DOI:10.1007/s11784-022-00953-w
  • Lazarev, Oleg Symplectic flexibility and the Grothendieck group of the Fukaya category, Journal of Topology, Volume 15 (2022) no. 1, p. 204 | DOI:10.1112/topo.12217
  • Lekili, Yankı; Ueda, Kazushi Homological mirror symmetry for Milnor fibers via moduli of A∞A‐structures, Journal of Topology, Volume 15 (2022) no. 3, p. 1058 | DOI:10.1112/topo.12248
  • Charest, François; Woodward, Chris Floer cohomology and flips, Memoirs of the American Mathematical Society, Volume 279 (2022) no. 1372 | DOI:10.1090/memo/1372
  • Amorim, Lino; Tu, Junwu Categorical primitive forms of Calabi–Yau A-categories with semi-simple cohomology, Selecta Mathematica, Volume 28 (2022) no. 3 | DOI:10.1007/s00029-022-00769-z
  • Kartal, Yusuf Barış Dynamical invariants of mapping torus categories, Advances in Mathematics, Volume 389 (2021), p. 107882 | DOI:10.1016/j.aim.2021.107882
  • Dahinden, Lucas C0-stability of topological entropy for contactomorphisms, Communications in Contemporary Mathematics, Volume 23 (2021) no. 06, p. 2150015 | DOI:10.1142/s0219199721500152
  • Auroux, Denis; Smith, Ivan Fukaya categories of surfaces, spherical objects and mapping class groups, Forum of Mathematics, Sigma, Volume 9 (2021) | DOI:10.1017/fms.2021.21
  • Kartal, Yusuf Barış Distinguishing open symplectic mapping tori via their wrapped Fukaya categories, Geometry Topology, Volume 25 (2021) no. 3, p. 1551 | DOI:10.2140/gt.2021.25.1551
  • Sheridan, Nick; Smith, Ivan Homological mirror symmetry for generalized Greene–Plesser mirrors, Inventiones mathematicae, Volume 224 (2021) no. 2, p. 627 | DOI:10.1007/s00222-020-01018-w
  • Ganatra, Sheel; Pomerleano, Daniel A log PSS morphism with applications to Lagrangian embeddings, Journal of Topology, Volume 14 (2021) no. 1, p. 291 | DOI:10.1112/topo.12183
  • Castronovo, Marco Fukaya category of Grassmannians: Rectangles, Advances in Mathematics, Volume 372 (2020), p. 107287 | DOI:10.1016/j.aim.2020.107287
  • Li, Yin Disjoinable Lagrangian tori and semisimple symplectic cohomology, Algebraic Geometric Topology, Volume 20 (2020) no. 5, p. 2269 | DOI:10.2140/agt.2020.20.2269
  • Ganatra, Sheel; Pomerleano, Daniel Symplectic cohomology rings of affine varieties in the topological limit, Geometric and Functional Analysis, Volume 30 (2020) no. 2, p. 334 | DOI:10.1007/s00039-020-00529-1
  • Benedetti, Gabriele; Ritter, Alexander F. Invariance of symplectic cohomology and twisted cotangent bundles over surfaces, International Journal of Mathematics, Volume 31 (2020) no. 09, p. 2050070 | DOI:10.1142/s0129167x20500706
  • Sanda, Fumihiko Computation of Quantum Cohomology From Fukaya Categories, International Mathematics Research Notices, Volume 2021 (2020) no. 1, p. 766 | DOI:10.1093/imrn/rnaa089
  • Ganatra, Sheel; Pardon, John; Shende, Vivek Covariantly functorial wrapped Floer theory on Liouville sectors, Publications mathématiques de l'IHÉS, Volume 131 (2020) no. 1, p. 73 | DOI:10.1007/s10240-019-00112-x
  • Casals, Roger; Murphy, Emmy Legendrian fronts for affine varieties, Duke Mathematical Journal, Volume 168 (2019) no. 2 | DOI:10.1215/00127094-2018-0055
  • Pascaleff, James On the symplectic cohomology of log Calabi–Yau surfaces, Geometry Topology, Volume 23 (2019) no. 6, p. 2701 | DOI:10.2140/gt.2019.23.2701
  • Sylvan, Zachary On partially wrapped Fukaya categories, Journal of Topology, Volume 12 (2019) no. 2, p. 372 | DOI:10.1112/topo.12088
  • Diogo, Luís; Lisi, Samuel T. Symplectic homology of complements of smooth divisors, Journal of Topology, Volume 12 (2019) no. 3, p. 967 | DOI:10.1112/topo.12105
  • Li, Yin Koszul duality via suspending Lefschetz fibrations, Journal of Topology, Volume 12 (2019) no. 4, p. 1174 | DOI:10.1112/topo.12113
  • Wu, Weiwei Equivariant split generation and mirror symmetry of special isogenous tori, Advances in Mathematics, Volume 323 (2018), p. 279 | DOI:10.1016/j.aim.2017.10.036
  • Tonkonog, Dmitry The closed-open string map for S1–invariant Lagrangians, Algebraic Geometric Topology, Volume 18 (2018) no. 1, p. 15 | DOI:10.2140/agt.2018.18.15
  • Evans, Jonathan; Lekili, Yankı Generating the Fukaya categories of Hamiltonian 𝐺-manifolds, Journal of the American Mathematical Society, Volume 32 (2018) no. 1, p. 119 | DOI:10.1090/jams/909
  • Gross, Mark; Katzarkov, Ludmil; Ruddat, Helge Towards mirror symmetry for varieties of general type, Advances in Mathematics, Volume 308 (2017), p. 208 | DOI:10.1016/j.aim.2016.03.035
  • Etgü, Tolga; Lekili, Yankı Koszul duality patterns in Floer theory, Geometry Topology, Volume 21 (2017) no. 6, p. 3313 | DOI:10.2140/gt.2017.21.3313
  • Ritter, Alexander F.; Smith, Ivan The monotone wrapped Fukaya category and the open-closed string map, Selecta Mathematica, Volume 23 (2017) no. 1, p. 533 | DOI:10.1007/s00029-016-0255-9
  • Lekili, Yankı; Polishchuk, Alexander Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Mathematica, Volume 23 (2017) no. 3, p. 1851 | DOI:10.1007/s00029-016-0286-2
  • Chan, Kwokwai; Pomerleano, Daniel; Ueda, Kazushi Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold, Communications in Mathematical Physics, Volume 341 (2016) no. 1, p. 135 | DOI:10.1007/s00220-015-2477-7
  • Lekili, Yankı; Pascaleff, James Floer cohomology of -equivariant Lagrangian branes, Compositio Mathematica, Volume 152 (2016) no. 5, p. 1071 | DOI:10.1112/s0010437x1500771x
  • Abouzaid, Mohammed; Smith, Ivan The symplectic arc algebra is formal, Duke Mathematical Journal, Volume 165 (2016) no. 6 | DOI:10.1215/00127094-3449459
  • Ritter, Alexander Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties, Geometry Topology, Volume 20 (2016) no. 4, p. 1941 | DOI:10.2140/gt.2016.20.1941
  • Ekholm, Tobias; Kragh, Thomas; Smith, Ivan Lagrangian exotic spheres, Journal of Topology and Analysis, Volume 08 (2016) no. 03, p. 375 | DOI:10.1142/s1793525316500199
  • Sheridan, Nick On the Fukaya category of a Fano hypersurface in projective space, Publications mathématiques de l'IHÉS, Volume 124 (2016) no. 1, p. 165 | DOI:10.1007/s10240-016-0082-8
  • Evans, Jonathan David; Lekili, Yankı Floer cohomology of the Chiang Lagrangian, Selecta Mathematica, Volume 21 (2015) no. 4, p. 1361 | DOI:10.1007/s00029-014-0171-9
  • Polterovich, Leonid Symplectic intersections and invariant measures, Annales mathématiques du Québec, Volume 38 (2014) no. 1, p. 81 | DOI:10.1007/s40316-014-0014-2
  • Brunner, Ilka; Carqueville, Nils; Plencner, Daniel Orbifolds and Topological Defects, Communications in Mathematical Physics, Volume 332 (2014) no. 2, p. 669 | DOI:10.1007/s00220-014-2056-3
  • Auroux, Denis A Beginner’s Introduction to Fukaya Categories, Contact and Symplectic Topology, Volume 26 (2014), p. 85 | DOI:10.1007/978-3-319-02036-5_3
  • Seidel, Paul Disjoinable Lagrangian spheres and dilations, Inventiones mathematicae, Volume 197 (2014) no. 2, p. 299 | DOI:10.1007/s00222-013-0484-x
  • Seidel, Paul Lagrangian homology spheres in (Am) Milnor fibres via ℂ∗–equivariantA∞–modules, Geometry Topology, Volume 16 (2013) no. 4, p. 2343 | DOI:10.2140/gt.2012.16.2343
  • Kragh, Thomas Parametrized ring-spectra and the nearby Lagrangian conjecture, Geometry Topology, Volume 17 (2013) no. 2, p. 639 | DOI:10.2140/gt.2013.17.639
  • Abouzaid, Mohammed; Smith, Ivan Exact Lagrangians in plumbings, Geometric and Functional Analysis, Volume 22 (2012) no. 4, p. 785 | DOI:10.1007/s00039-012-0162-y
  • Smith, Ivan Floer cohomology and pencils of quadrics, Inventiones mathematicae, Volume 189 (2012) no. 1, p. 149 | DOI:10.1007/s00222-011-0364-1
  • Abouzaid, Mohammed Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Inventiones mathematicae, Volume 189 (2012) no. 2, p. 251 | DOI:10.1007/s00222-011-0365-0
  • Abouzaid, Mohammed A cotangent fibre generates the Fukaya category, Advances in Mathematics, Volume 228 (2011) no. 2, p. 894 | DOI:10.1016/j.aim.2011.06.007

Cité par 66 documents. Sources : Crossref